
4.52.7

Evaluation of Glottal Inverse
Filtering Techniques on
OPENGLOT Synthetic Male and
Female Vowels

Marc Freixes, Luis Joglar-Ongay, Joan Claudi Socoró and Francesc Alías-Pujol

Special Issue
IberSPEECH 2022: Speech and Language Technologies for Iberian Languages

Edited by

Prof. Dr. Francesc Alías, Dr. José Luis Pérez Córdoba, Dr. Zoraida Callejas Carrión and

Prof. Dr. António Joaquim da Silva Teixeira

Article

https://doi.org/10.3390/app13158775

https://www.mdpi.com/journal/applsci
https://www.scopus.com/sourceid/21100829268
https://www.mdpi.com/journal/applsci/stats
https://www.mdpi.com/journal/applsci/special_issues/2JW9D21C37
https://www.mdpi.com
https://doi.org/10.3390/app13158775


Citation: Freixes, M.; Joglar-Ongay,

L.; Socoró, J.C.; Alías-Pujol, F.

Evaluation of Glottal Inverse

Filtering Techniques on OPENGLOT

Synthetic Male and Female Vowels.

Appl. Sci. 2023, 13, 8775. https://

doi.org/10.3390/app13158775

Academic Editors: Douglas

O’Shaughnessy and

Javier Hernando

Received: 23 June 2023

Revised: 18 July 2023

Accepted: 25 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Evaluation of Glottal Inverse Filtering Techniques on
OPENGLOT Synthetic Male and Female Vowels †

Marc Freixes *,‡ , Luis Joglar-Ongay ‡ , Joan Claudi Socoró and Francesc Alías-Pujol

Human-Environment Research (HER), La Salle—Universitat Ramon Llull, Sant Joan de la Salle, 42,

08022 Barcelona, Spain; luis.joglar@salle.url.edu (L.J.-O.); joanclaudi.socoro@salle.url.edu (J.C.S.);

francesc.alias@salle.url.edu (F.A.-P.)

* Correspondence: marc.freixes@salle.url.edu
† This paper is an extended version of our paper published in the conference IberSPEECH2022.
‡ These authors contributed equally to this work.

Abstract: Current articulatory-based three-dimensional source–filter models, which allow the pro-

duction of vowels and diphtongs, still present very limited expressiveness. Glottal inverse filtering

(GIF) techniques can become instrumental to identify specific characteristics of both the glottal source

signal and the vocal tract transfer function to resemble expressive speech. Several GIF methods

have been proposed in the literature; however, their comparison becomes difficult due to the lack of

common and exhaustive experimental settings. In this work, first, a two-phase analysis methodology

for the comparison of GIF techniques based on a reference dataset is introduced. Next, state-of-the-art

GIF techniques based on iterative adaptive inverse filtering (IAIF) and quasi closed phase (QCP)

approaches are thoroughly evaluated on OPENGLOT, an open database specifically designed to

evaluate GIF, computing well-established GIF error measures after extending male vowels with their

female counterparts. The results show that GIF methods obtain better results on male vowels. The

QCP-based techniques significantly outperform IAIF-based methods for almost all error metrics and

scenarios and are, at the same time, more stable across sex, phonation type, F0, and vowels. The

IAIF variants improve the original technique for most error metrics on male vowels, while QCP with

spectral tilt compensation achieves a lower spectral tilt error for male vowels than the original QCP.

Keywords: performance evaluation; glottal inverse filtering; glottal source; phonation types; speech

analysis; OPENGLOT

1. Introduction

Voice generation based on articulatory speech synthesis has been significantly im-
proved by considering three-dimensional (3D) source–filter models, surpassing the limi-
tations of their one-dimensional counterparts [1,2]. These advanced models have demon-
strated their ability to generate various speech utterances, including vowels [3], diph-
thongs [4,5], and vowel–consonant–vowel sequences incorporating fricatives [6,7]. Despite
these accomplishments, the exploration of expressive voice synthesis using these 3D-based
numerical simulations is still in its early stages due to its great complexity. In fact, ex-
pressiveness in speech, which implies the communication of non-linguistic information
about emotions, speaking styles, and mood, among other things, can be conveyed through
prosodic (including the modification of the fundamental frequency, F0, duration and en-
ergy of phonemes) and voice quality modelling (embracing factors ranging from formant
tuning due to vocal tract variations to the modification of the parameters of the glottal
source, such as phonation or aspiration noises) (see [8] for a comprehensive review). A
preliminary endeavour in this direction was presented by Freixes et al. in [9], where
the authors introduced a method that modified the spectral tilt of the glottal flow signal
produced using the Liljencrants–Fant (LF) model’s [10] input to vocal tract geometries
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obtained from magnetic resonance imaging [4], aiming to generate happy and aggressive
/a/ vowels. Building upon this initial work, a following study emphasised the importance
of accurately simulating higher-order modes to achieve expressiveness [11], especially for
tense phonations and high fundamental frequencies. Additionally, the manipulation of the
vocal tract characteristics using simulations based on finite element methods (FEM) has
enabled the production of effects such as the singing formant in 3D-based articulatory voice
generation [12]. Therefore, from these works, it can be concluded that, for the production
of expressive speech, a proper model and adjustment of the vocal tract response and the
glottal source signal is of paramount importance, as is considering their varying relevance
depending on the target speaking style [13,14].

The estimation of the glottal source (GS) and the vocal tract (VT) transfer function
from speech signals therefore becomes instrumental. Glottal inverse filtering (GIF) methods
have been widely used for this purpose, although alternative approaches based on a
joint estimation process have also been proposed [15,16]. Female voices are known to be
especially difficult to analyse compared to males [17], especially due to the higher mean
fundamental frequency of the GS as well as the smaller larynx and slightly shorter VT [18],
which entail formant–frequency differences between both sexes [19], among other effects.

The GIF techniques can be broadly categorized into three main groups, as outlined
by Drugman et al. [17]: mixed-phase decomposition, iterative and adaptive inverse filtering,
and closed-phase inverse filtering. Among the GIF techniques based on mixed-phase de-
composition, complex cepstrum decomposition (CCD) [20] and zeros of the z-transform [21]
are notable approaches. CCD relies on the cepstral decomposition of the source–filter model;
that is, it entails working on the so-called quefrency domain. On the other hand, zeros of the
z-transform distinguishes the VT and GS components of speech by analyzing the location of
zeros on the unit circle. Zeros inside the unit circle correspond to the VT resonances, while
those outside the circle represent the GS response, which contains the maximum-phase
component of speech, i.e., the glottal open phase [17]. However, despite the effectiveness
of these straightforward approaches, more advanced techniques have emerged, albeit at
the cost of increased complexity in their tuning and implementation.

The iterative adaptive inverse filtering (IAIF) algorithm proposed by Alku et al. [22]
offers an alternative approach to estimate the GS and VT transfer functions based on
classic linear prediction coding (LPC). This algorithm employs a two-step iterative process
that involves an initial gross estimation followed by a refined estimation of GS and VT
transfer functions. A subsequent work by Alku [23] included high-pass filtering (HPF)
and pitch-synchronous analysis, showing potential improvements, though the results were
only analysed qualitatively. More recently, several variants of the IAIF algorithm have
been developed and documented in the literature. One such variant, known as iterative
optimal pre-emphasis (IOP-IAIF), replaces the initial gross step of IAIF with an iterative
pre-emphasis approach [24]. Additionally, a modified version called the glottal flow model
(GFM)-IAIF restricts the GS filter order in both the initial gross estimation and the refined
stages [25].

Within the third category of GIF techniques, we can find those approaches supported
by the estimation of the glottal closing and/or opening instants. Closed-phase covariance
analysis uses both estimations to derive an all-pole VT transfer function from speech
samples within the closed-phase time region, to this way estimate the glottal flow signal [26].
However, as Wong et al. state in their seminal paper [26], this technique relies on estimations
of glottal closure instants (GCIs) and glottal opening instants, being the latter less reliable
than the former. Focusing only on the estimation of GCIs, thus simplifying the process,
the quasi-closed phase method (QCP) [27] performs VT estimation based on a weighting
function that, while uses the whole set of signal samples, emphasizes on the speech
samples within the closed-phase region [27,28]. As a potential method to optimize the
QCP method’s performance, Seshadri et al. in [29] appended a spectral tilt compensation
module as a post-processing step to minimize the residual spectral cues from the glottal
source (hereafter denoted as ST-QCP).
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The performance evaluation of GIF methods typically involves considering diverse
error measures; the most commonly employed are [17,25,30,31] the root-mean-square
(RMS), normalized amplitude quotient (NAQ), quasi-open quotient (QOQ), harmonic
richness factor (HRF), H1H2 (relationship between the first and second harmonics), spectral
distortion, parabolic spectrum parameter, and spectral tilt, among others. These measures
serve as quantitative indicators of the accuracy of the estimated glottal source signal after
applying a specific GIF technique.

Despite considering common error metrics, these evaluations are typically conducted
using either real or synthetic speech data generated by the authors themselves (see,
e.g., [17,25,30,31]). Therefore, the reliable analysis of the results reported in the litera-
ture becomes quite challenging, making the direct comparison between GIF techniques, at
least, intricate, or even unfeasible due to the high dependency of the specific experimental
settings considered in each study. Table A1 presents the main characteristics of the speech
databases used for GIF evaluation in previous literature, listed in terms of pitch range,
vowels, type of dataset (synthetic or real speech), sample frequency, and phonation type.
To our knowledge, some of the listed databases are not publicly available, which limits the
ability to draw comparisons with other methods with exactly the same conditions. To tackle
this problem, the recent publication of the OPENGLOT [32] dataset becomes instrumental,
especially since it has been specifically designed by researchers from this research field to
assess different GIF methods on the same common reference environment. The main pillars
of OPENGLOT are twofold: first, it provides a representative variety of test signals for GIF
evaluation and, second, it is an open dataset; thus, it allows the evaluation and comparison
of any GIF method with respect to previously developed benchmark techniques.

In this paper, first, a two-stage analysis methodology for the comparison of glottal
inverse filtering techniques based on a common reference dataset is introduced. Second,
current state-of-the-art GIF techniques based on IAIF and QCP approaches, which have
been partially compared in the literature, are exhaustively evaluated following this analysis
methodology on OPENGLOT Repository I [32] by computing various well-established
GIF error measures. As the original repository only contains male formant frequencies
for producing vowels with different phonation types and fundamental frequencies, the
experiments are extended by including the female counterparts from the original reference
study [19]. The paper is organised as follows. Section 2 presents the analysis method-
ology and the evaluated GIF methods in a nutshell. Next, Sections 3 and 4 detail the
conducted experiments and the obtained results, which are discussed in Section 5. Finally,
the conclusions and future work are presented in Section 6.

2. Analysis Methodology and GIF Methods

This section is devoted to describing the analysis methodology followed to compare
different GIF methods in a common dataset. Moreover, the state-of-the-art GIF techniques
considered in this work are briefly introduced, highlighting the parameters that are tuned
for the speech signal’s GS and VT decomposition.

2.1. Analysis Methodology

The designed analysis methodology, as depicted in Figure 1, can be divided into
two main phases: parameter tuning and error computation. The same speech database
is considered as input for both steps. The procedure is repeated for each utterance in the
database. The output of the parameter tuning stage is the best parameter configuration for
the considered GIF technique given an error metric, whereas a set of typical glottal error
measures are obtained as results of the second stage. In both cases, the estimated glottal flow
signal, obtained from the GIF method, is evaluated with respect to the glottal flow ground
truth, which is included in the dataset’s speech audio files. Notice that the methodology
includes a block devoted to computing GCIs from the speech signal, which is necessary
for those GIF methods that rely on this information as an anchor point. Finally, the glottal
error measures, subsequently used for conducting statistical analyses, are computed at the
pulse level (based on GCIs) to compare the different GIF methods.
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Figure 1. Block diagram of the analysis methodology followed to compare the performance of glottal

inverse filtering methods on a common reference speech dataset.

2.2. IAIF-Based Approaches

2.2.1. IAIF

IAIF is a well-known technique to estimate the glottal source in speech signals. It is
based on LPC without the need for the detection of the glottal closure phase (e.g., GCI
and/or glottal opening instants, from which the percentage of voiced speech periods where
the glottis is closed can be derived) [22]. This method is particularly effective in low-signal-
to-noise-ratio environments compared to other similar techniques [17]. IAIF involves a
two-step iterative process, where the initial estimation of both the GS and VT all-pole
transfer functions is followed by a refinement stage. In each iteration, the effect of GS is
firstly cancelled by inversely filtering the original speech with a low-order pre-emphasis
LPC filter. From its output, the coarse estimation of VT is obtained with a higher-order
LPC analysis. The glottal flow estimation derived from the inverse filtering of the original
speech signal with this first VT coarse estimation is used as input in the second iteration to
improve the accuracy of the low-GS-order LPC model. The glottal source order (henceforth
denoted as Ng), fixed at 1 during the first iteration, can be increased during the refinement
stage. The vocal tract order (hereafter denoted as Nv) is typically kept constant for both
iterations [25,31]. A simple pre-emphasis FIR filter with a leaky integration coefficient is
used to model lip radiation (hereafter lip radiation coefficient is denoted as d).

Finally, we also consider including a HPF with a 30 Hz cut-off frequency to remove
undesirable fluctuations in the estimated glottal source [23].

2.2.2. IOP-IAIF

The IOP-IAIF variant was proposed by Mokhtari and Ando [24] to improve the
cancellation of the spectral tilt of the glottal source remaining from the initial estimation
of the vocal tract. It is based on replacing the initial estimation of glottal source with an
iterative procedure [24]. This process defines an unconstrained pre-emphasis filter order
devoted to minimizing the one-delay correlation of the speech signal at each iteration. The
number of iterations applied to a given speech frame is that which obtains a coefficient value
lower than a given threshold (typically 0.001). In this IAIF-based approach, in addition to
this initial estimation of GS based on an iterative optimization, the other processes related
to the coarse estimation of VT as well as the second iteration that obtains a refinement of
both GS and VT remain exactly the same as the original IAIF approach. Hence, apart from
the VT order and the lip radiation coefficient d, the glottal source is also modelled at the
refinement stage using an all-pole filter of a certain order (Ng ≥ 1).

2.2.3. GFM-IAIF

The GFM-IAIF variant was designed by Perrotin and McLoughlin to reduce the origi-
nal IAIF algorithm complexity and improve the vocal effort estimation of real speech [25].
As in the IOP-IAIF technique, the GFM-IAIF technique builds on the original IAIF approach,
in which the two iterations (a coarse iteration followed by a refinement iteration) both
include low-order GS and high-order VT LPC-based modeling. It is based on limiting the
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glottal source’s linear prediction filter order in both the initial and refinement estimation
steps to a value of Ng = 3. Therefore, in this case, only two parameters need to be adjusted:
Nv and d.

2.3. QCP-Based Approaches

2.3.1. QCP

QCP was proposed by Airaksinen et al. [27] as a new glottal inverse filtering technique
that improves on the results from previous closed-phase analysis algorithms [26] using
the weighted linear prediction (WLP) technique proposed by Ma et al. [33], thus allowing
for more accurate LPC-based models of speech. This was made possible through the
definition of an attenuated main excitation (AME) weighting function that emphasizes the
closed-phase time regions. Within the closed-phase region of the glottis, the voiced speech
signal is solely influenced by VT, which allows fair estimations to be obtained. QCP takes
advantage of this fact while enabling the processing of unconstrained length speech signals
of sustained vocalizations. In constrast to IAIF-based techniques, in the QCP approach,
only one high-order VT estimation is performed, and the glottal flow signal estimation is
directly obtained while inverse filtering the original speech signal after cancelling the lip
radiation effect.

In contrast to IAIF-based methods, the AME weighting function of the QCP technique
needs the computation of GCIs, which, together with the following three parameters,
define its specific shape: the position quotient (PQ), which represents the relative starting
position of the non-attenuated section; the duration quotient (DQ), which represents the
relative length of the non-attenuated section; and the ramp quotient (RQ), which defines
the relative duration of the transition ramp that connects attenuated and non-attenuated
sections of each voiced speech period. Then, QCP can be tuned to a specific speech signal
with these three control parameters, the vocal tract all-pole filter order Nv, and the lip
radiation coefficient d.

2.3.2. ST-QCP

The vocal tract filter obtained with QCP can still present a residual spectral tilt. In
order to improve this aspect, a compensation procedure was proposed by Seshadri et al. [29]
using a first-order linear prediction filter to transfer the residual spectral tilt from the vocal
tract to the glottal flow’s estimated signal. In this paper, the spectral tilt compensation
is performed as follows. First, the original VT frequency transfer function is computed,
and from this, the least squares 1-order LPC fitting based on [34] is performed; finally,
the QCP-based estimation of the glottal flow signal is filtered, with the obtained filter
presenting the compensated glottal flow estimation.

3. Experiments

The analysis carried out on the speech signals was based on a constant frame rate with
a 50 ms Hanning window and a 50% overlap across the five considered GIF methods. To
ensure accurate results, only the stationary part of the vowels was considered, excluding
the initial and final 5% of the audio files. Furthermore, to ensure the continuity of the signal
frame-to-frame, a processing method that preserved the initial and final memory state for
every filter over the applied methods was applied. On the other hand, the estimation of
GCIs, which play a key role in both QCP-based approaches and the calculation of the error
metrics (detailed in Section 3.3), was obtained using a speech event detection technique
called SEDREAMS, which is based on the residual excitation and mean-based signal [35].

The code used for the experiments can be found at this public repository: https://github.
com/SpeechSalleBcn/inverse-filtering-evaluation (first version published on 23 June 2023).

3.1. OPENGLOT Dataset

OPENGLOT is composed of several speech datasets and was conceived to become a
coherent and common environment for the evaluation of GIF methods. It was developed
and released in 2019 by Alku et al. [32]. In this work, the performance of the GIF methods

https://github.com/SpeechSalleBcn/inverse-filtering-evaluation
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was evaluated using the first repository of OPENGLOT as a common reference. This
dataset consists of a collection of synthetic vowels obtained by filtering glottal flow signals
generated with an LF model [10]. The audio files, sampled at 8 kHz, include both the
synthetic vowels and the glottal flow signals that constitute the ground truth.

Specifically, 56 glottal flow signals were generated as excitation to cover four different
phonation types (from lax to tense: whispery, breathy, normal, and creaky) and an F0
range between 100 and 360 Hz with steps of 20 Hz. On the other hand, the VTs were
modelled as digital 8th-order all-pole filters defined with 4 formants. Six different vowels
were considered (a, e, i, o, u, æ) using the male formant frequencies extracted from Gold
and Rabiner [36], which, in turn, refer to the previous study conducted by Peterson and
Barney [19]. For a more comprehensive assessment, the corresponding female vowels have
been also generated considering the female formant frequencies also reported in [19]. As a
result, the experiments have been conducted on a total of 672 vowels. The code used for
the generation of the OPENGLOT Repository I vowels is available at the main OPENGLOT
website (http://research.spa.aalto.fi/projects/openglot, accessed on 5 May 2023).

3.2. GIF Parameter Tuning

Each of the evaluated GIF methods considers several parameters that should be fine-
tuned to obtain the optimal results. During the first phase of the analysis methodology, grid-
search optimisation was conducted for each method and speech signal in the dataset, driven
by the median absolute waveform error (MAE-Wave) as the optimization error metric
(see Figure 1). This metric is computed by averaging the root-mean-square (RMS) error
between the normalised estimated glottal flow and the ground truth across all the speech
signal periods [30]. This normalisation is twofold, consisting, first, of a time alignment
by peak-picking the autocorrelation against the ground-truth glottal flow. Secondly, it is
normalised pulse-by-pulse using the GCIs as time marks by applying a scale and the DC
offset normalization factors obtained by minimising the total squared error between the
ground truth and the estimated glottal flow.

Table A2 presents the GIF methods and the parameters explored in the previous litera-
ture. The parameter ranges used in the present work were chosen accordingly. Furthermore,
none of the reviewed studies included an analysis of all the IAIF and QCP variants.

Table 1. Parameters tuned for each GIF method evaluated. Vocal tract order is referred to as Nv,

glottal source order as Nv, and lip radiation as d, HPF represents a high-pass filter flag, DQ, PQ and

RQ denote duration, position and ramps quotient, whilst ST stands for the spectral tilt compensation

binary flag. The ranges are written as initial value:increment:final value.

Nv Ng d HPF DQ PQ RQ ST

IAIF 6:1:14 3:1:6 0.8:0.01:0.99 0/1
IOP-IAIF 6:1:14 3:1:6 0.8:0.01:0.99
GFM-IAIF 6:1:14 3 0.8:0.01:0.99 0/1
QCP 6:1:14 3:1:6 0.8:0.01:0.99 0.4:0.05:1 0:0.025:0.2 0:0.05:0.2 0
ST-QCP 6:1:14 3:1:6 0.8:0.01:0.99 0.4:0.05:1 0:0.025:0.2 0:0.05:0.2 1

As mentioned in Section 2, there are two common parameters for all methods that
must be defined: the vocal tract order Nv and the lip radiation coefficient d. Following
Perrotin and McLoughlin’s study [25], the Nv coefficient ranged from [Fs/1000]− 2 = 6
to [Fs/1000] + 6 = 14 with increments of 1, which is sufficient for modeling vowel vocal
tract resonances. Moreover, the d coefficient varied from 0.8 to 0.99, with increments
of 0.01. Furthermore, IAIF, IOP-IAIF, and GFM-IAIF also had the glottal source order
(Ng) parameter. For the first two methods, a range from 3 to 6 with increments of 1 was
considered, whilst in the case of the GFM-IAIF method, it was fixed at 3 according to
Perrotin and McLoughlin definition [25]. In addition, for IAIF and IOP-IAIF, the HPF
activation was also considered as an optimisation parameter. Lastly, the parameters of the
QCP, based on Airaksinen et al. [28], ranged as follows: DQ from 0.4 to 1 with a step of

http://research.spa.aalto.fi/projects/openglot
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0.05, PQ from 0 to 0.2 with a step of 0.025, and RQ from 0 to 0.2 with a step of 0.05. Table 1
summarizes all the parameter ranges and values for each GIF method.

3.3. Error Measures

For the assessment of the compared GIF techniques, we used a set of well-known
temporal and frequency-domain performance measures computed at the pulse level. A
total of 28.193 (14.097 for female and for 14.096 male, respectively) pulses were considered.
These measures allowed us to evaluate the estimated signals of glottal flow in comparison
with their respective ground-truth counterparts from a global perspective but also for each
subset of speech features (e.g., phonation types, fundamental frequencies, or vowel type).

First, the relative RMS distance (in %) between normalized and ground-truth glottal
signals was obtained for every considered period of the signal according to the CGIs [30].
Moreover, the following four error measures related to voice quality were also calculated
for both the estimated and ground-truth glottal signals: (i) average normalized amplitude
quotient (NAQ, in %), defined as the relative duration of the glottal closing phase, which
has been used in the estimation of voice quality variation along the breathy-to-pressed con-
tinuum [31,37]; (ii) H1H2 (in dB), a measure widely used to characterize voice quality [17]
and defined as the difference between the amplitudes of the first and second harmonics of
the glottal flow spectrum; (iii) the harmonic richness factor (HRF, in dB), which is defined
as the ratio of the sum of the amplitudes at the harmonics in the glottal waveform to the
amplitude of the component at the fundamental frequency and which has shown good
correlation with the phonation types [31,38]; and (iv) spectral tilt (ST, in dB/decade), which
describes the spectral slope of the GS using a simple linear regression of the harmonic
amplitudes below 5 kHz [25] and has also been found to correlate well with phonation
type [38] as well as vocal effort [39].

Following other similar studies, such as [25,31], the NAQ, H1H2, HRF and ST measures
computed at the pulse level for both the glottal flow output of a given GIF technique and
the corresponding reference signal were used to obtain a certain error measure; this was,
specifically, the absolute error (in dB) for H1H2, HRF, and ST, while it was the absolute
relative error (in %) for NAQ. The obtained results were analysed globally and also per
vowel, phonation type, and F0 value. In all cases, the results for both the male and female
vocal tracts were also compared in order to analyse their influence on the set of selected
GIF methods.

4. Results

This section describes the results obtained from the conducted experiments to evalu-
ate and compare the performance of the considered IAIF- and QCP-based GIF methods.
Five measure errors were used for this evaluation: RMS, NAQ, H1H2, HRF, and ST error.
Figures 2–5 show the distribution in boxplots of these measures for the evaluation of the
five GIF approaches, separated by sex and analysing the results by method globally, as well
as grouped by F0, phonation type, and vowel, respectively. Figure 3 presents the results by
F0, grouping them into three F0 intervals [28] composed of low-pitch (i.e., F0 < 190 Hz),
mid-pitch (i.e., 190 Hz ≤ F0 < 280 Hz), and high-pitch (i.e., F0 ≥ 280 Hz) signals, while
Figure A1, in turn, presents the results for the complete sweep of F0 values from 100 to
360 Hz.

The comparison between the obtained results for every pair of GIF methods along each
of the following analyses was supported with the Wilcoxon signed-rank paired test [40]
with the Holm–Bonferroni correction, and the outcomes of all these tests are included in
Appendix C.

4.1. Global Results

Figure 2 depicts the global boxplot distributions of the evaluation error metrics for the
speech signals of the dataset for each GIF method divided in two columns by sex. Moreover,
their median values are included in Tables 2 and 3 to aid in their quantitative comparison.
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Figure 2. Distributions and median of error measures of RMS, NAQ, H1H2, HRF, and ST between the

estimated glottal flow and the ground-truth signals for each GIF method evaluated as boxplots with

whiskers from 5% up to 95%. Columns shows results for the male and female subsets, respectively.

Table 2. Median of the 5 error measures between the estimated glottal flow and the ground-truth

(original glottal flow) signals for male vowels, computed at the pulse level for the 14.096 considered

pulses. The best result per error metric is highlighted in bold.

IAIF IOP-IAIF GFM-IAIF QCP ST-QCP

RMS distance (%) 13.45 15.41 15.16 3.97 4.44
NAQ error (%) 10.53 9.94 9.71 7.74 7.87
H1H2 error (dB) 2.81 2.07 2.1 0.27 0.41
HRF error (dB) 0.84 0.87 0.8 0.64 0.6
ST error
(dB/decade)

12.31 7.93 6.79 8.38 6.55

Table 3. Median of the 5 error measures between the estimated glottal flow and the ground-truth

(original glottal flow) signals for female vowels, computed at pulse level for the 14.097 considered

pulses. The best result per per error metric is highlighted in bold.

IAIF IOP-IAIF GFM-IAIF QCP ST-QCP

RMS distance (%) 15.06 15.7 17.79 3.74 4.74
NAQ error (%) 16.8 16.91 15.48 6.99 9.25
H1H2 error (dB) 1.22 0.93 1.51 0.25 0.34
HRF error (dB) 1.34 1.26 1.39 0.75 0.85
ST error
(dB/decade)

19.58 15.02 16.62 8.8 9.9

As a general trend, for both sexes, it can be observed that QCP-based approaches
obtain lower error metrics than the IAIF-based techniques, with 98 out of the 100 pair-
to-pair comparisons being statistically significant, as can be seen in Table A3. When it
comes to comparing the performance of the five GIF approaches with respect to sex, it can
be observed that the error metrics obtained in the female speech corpus are, in general



Appl. Sci. 2023, 13, 8775 9 of 22

terms, despite H1H2, higher than those obtained in the male speech data. Moreover, the
QCP-based approaches present quite a more stable response in terms of sex variation than
IAIF-based counterparts. Moreover, it is worthwhile to note that QCP presents the most
stable performance across sexes (with the lowest median RMS, NAQ, and H1H2 for female
speech, while ST-QCT presents the lowest HFR and ST-QCP for the male data), while
GFM-IAIF is more sensitive, as shown by the increases in the HRF and ST error medians as
well as the wider distributions in the female dataset.

In particular, for the male corpus, QCP presents the lowest RMS, NAQ, and H1H2
errors, while ST-QCP outperforms the original version of the technique in terms of the
HRF and ST error metrics. Moreover, it is worth mentioning that, for this sex, the IOP and
GFM variants of IAIF outperform IAIF in terms of the NAQ, H1H2, and ST error, with the
latter also being lower than that obtained by QCP. In the female speech corpus, QCP-based
approaches surpass IAIF-based approaches for all error metrics, with the QCP method
presenting the lowest values of all methods, even outperforming ST-QCP in the ST error
metric. For this sex, both the IOP and GFM variants improve the original IAIF in terms of
the ST error, as does H1H2 plus HRF for IOP and NAQ for GFM, respectively.

4.2. F0

Regarding the performance of the inverse filtering techniques for the F0 variable,
the general tendency is for RMS, NAQ, and H1H2 for both male and female subsets to
present larger errors for higher F0s, with a slight decrease in the higher frequencies for the
case of male data for QCP-based methods and IAIF-IOP. This result can be observed from
Figure 3 (for a detailed analysis, the reader is referred to the F0 sweep analysis included in
Appendix B). This difference between lower and higher frequencies is emphasised in the
female case. It can be observed that IAIF-based methods are more sensitive to F0 changes,
while QCP approaches are more stable and obtain better results across the whole F0 range,
especially for RMS and H1H2 error metrics.
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the estimated glottal flow and the ground-truth signals for each GIF method evaluated as boxplots

with whiskers from 5% to 95%, grouped by F0 range. Columns shows results for the male and female

subsets, respectively.
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On the contrary, the evaluation through HRF presents better results for high frequen-
cies for both male and female speech data. For the ST error, IOP-IAIF and GFM-IAIF are
the best performing methods for lower frequencies in the male subset, whilst the ST-QCP
method presents lower values in the male high F0 range. In the case of the female subset,
the QCP-based approaches are better, obtaining the best results with the original version of
the algorithm.

In this case, as shown in Table A4, of the 150 pair-to-pair Wilcoxon statistical analyses
conducted, 94% in the case of male data and 98.6% in the case of female data are significant.

4.3. Phonation Type

Regarding the evaluation of the behaviour of the GIF methods according to the dif-
ferent phonation types, a general decrease in the RMS and NAQ error metrics can be
observed in Figure 4 when the voice is less tense (e.g., whispery). On the other hand, H1H2
increases for whispery and IAIF-based methods for both sexes. For these three errors, QCP
and ST-QCP achieve the best results for both the male and female subsets. It is worth
mentioning that H1H2 presents a very stable response across phonation types for both
sexes. A general observation in the case of the female corpus is the wider spread of the
distributions for IAIF-based methods, especially for tense phonations compared to the male
distributions, except for H1H2. In terms of the HRF and ST errors, the IAIF methods show
larger errors for relaxed phonation types, whereas IOP-IAIF presents larger error values
for tense phonation types while being the best method next to ST-QCP for whispery for
male speech data. Furthermore, for male data, GFM-IAIF and ST-QCP show more stable
behaviour across the phonation type range. On the other hand, for the female case, the
IOP-IAIF results do not improve for lax phonations, and QCP-based approaches are clearly
better than IAIF-based methods. Finally, the Wilcoxon analysis shows, as presented in
Table A5, statistically significant differences compared pair-to-pair in 95.5% of the cases for
the male subset and 98.5% of the cases for the female subset. The breathy phonation type
has more non-significant differences, with four cases for male data and one for female data.
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4.4. Vowels

Figure 5 depicts the results grouped per vowel. It can be seen how, in terms of RMS,
the best results are obtained by QCP-based approaches for both sexes, with these being
the most stable across all vowels, as shown in Figure A1. IAIF and its variants behave
considerably worse, especially for /i/ and /u/ for male speech and /i/, /e/, and /æ/
for female speech. When looking at H1H2 outcomes, again, QCP and ST-QCP behaviours
are the best and are also very stable across vowels for both sexes. The NAQ errors show
lower error values for IAIF-based methods and are, in most cases, comparable to those
obtained by QCP, except for /i/ for both male and female and /e/ and /æ/ for female
speech. For the HRF measure, the results of IAIF-based methods are again closer to those
obtained by QCP-based techniques. These results are quite stable with some exceptions,
such as IOP-IAIF for /u/ and /o/ for the male case and the three IAIF methods for /i/,
/e/, and /æ/ for female data. Finally, it is interesting to notice how the ST error shows a
very different result for male and female speech. In the first case, all the methods behave
in a very stable manner across the vowels, with ST-QCP having the best response, closely
followed by IOP-IAIF with the best result for /e/ and GFM-IAIF for /a/ and /u/, while
IAIF obtains the worst ST values. On the other hand, QCP presents the best results for
vowels with lower formant frequencies, and the IAIF variants demonstrate the worst results.
For higher-formant-frequency vowels, on the contrary, IOP-IAIF and GFM-IAIF are the
methods with lower errors.
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In terms of statistics, this case had the lowest statistically significant differences for the
pair-to-pair Wilcoxon analysis and was significantly different for 92% out of the 300 pairs
for the male subset and 96% in the case of the female subset. It is also apparent, as shown
in Table A6, that the NAQ measure has the most non-significant number of pairs, with 11
out of 60 for male data and 4 for female data.

Figure 6 shows two examples of both normalised glottal flow output signals and
spectra of ground-truth and GS estimations obtained for the optimised versions of each
GIF method. The two chosen examples correspond to an /i/ vowel for male and female
data, respectively, because there is a clear difference between GIF results within these two
subsets, as can be appreciated in Figure 5. In particular, for each subset (i.e., /i/ for the
male subset and /i/ for the female subset), the selected example is the one that obtained a
lower sum of distances between its MAE-Wave value and the corresponding MAE-Wave
mean value of each of the five GIF methods. The /i/ of the male example corresponds to
a signal with breathy phonation and an F0 value of 360 Hz, while the /i/ of the female
example has a normal phonation and an F0 value of 220 Hz. As can be seen in Figure 6a,b,
the two selected examples show clearly worse results for the female estimated signal in
comparison to the male counterpart for all GIF methods, which is also visible in the /i/
region of Figure 5. Specifically, the female example obtains mean relative increments with
regard to the male example of 47.7% for MAE-Wave, 521.7% for NAQ, 88.2% for H1H2,
67.8% for HRF, and 167.1% for ST. In addition, mean relative increments of each of the GIF
methods across the five error measures are 120.4% for IAIF, 111% for IOP-IAIF, 130.4% for
GFM-IAIF, 65.2% for QCP, and 465.5% for ST-QCP.

(a) Glottal flow signal comparison for male /i/, breathy

at 360 Hz.

(b) Glottal flow signal comparison for a female /i/, normal

at 220 Hz.

(c) Glottal flow spectra comparison for male /i/, breathy

at 360 Hz

(d) Glottal flow spectra comparison for female /i/, normal

at 220 Hz

Figure 6. Ground-truth and normalised glottal flow signal outputs and spectra of the five GIF

methods for a male /i/ with breathy phonation and F0 of 360 Hz on the left column and a female /i/

with normal phonation and F0 of 220 Hz on the right column.



Appl. Sci. 2023, 13, 8775 13 of 22

As discussed before, ST-QCP and QCP clearly outperform the three IAIF-based ap-
proaches. In Figure 6a these differences become apparent, with ST-QCP being the method
that attains a greater degree of similarity to the ground-truth signal. In Figure 6b these dif-
ferences are more salient because the normalised glottal flow output signals of IAIF-based
approaches present more noisy behaviour than their QCP-based counterparts. When it comes
to the spectral representations of the glottal flow estimations, Figure 6c shows estimations
that denote fewer differences in spectral tilt with regard to the ground-truth signal, while in
Figure 6d, these differences are visibly higher, specially for the three IAIF variants.

5. Discussion

Some of the general trends observed from the results of this study can be linked
with other similar studies found in the literature. For example, the better performance
of QCP compared to the original IAIF approach in terms of NAQ, H1H2, and HRF was
also found in the work of Airaksinen et al. in [27,28]. However, it is worth mentioning
that the error measures obtained in their study and the ones presented in this paper are
not comparable. Airaksinen et al. used a synthetic vowel database constructed via the
physical modeling of human speech production with different characteristics (e.g., the F0
range), and they fixed the GIF parameters, such as the vocal tract order, glottal source
order, and lip radiation coefficient to fixed values for the set of analysed speech signals.
Additionally, in the study by Chien et al. [30], the authors found that methods based on
weighted linear prediction, such as QCP approaches (denoted as sparse linear prediction
and weighted linear prediction) obtained better performance with regard to IAIF using
physically modelled synthetic sustained vowels with different ranges of physical parameter
variations (e.g., F0, subglottal pressures, and vowel types). Furthermore, in the present
work, it has been observed that there is a clear relationship between specific error measures
and F0, as well as phonation type. In regard to F0, for higher F0 values, higher RMS and
H1H2 errors are also obtained, as in the work of Perrotin and McLoughlin [25], but the set
of IAIF-based approaches obtain different patterns than our study (e.g., our results for the
GFM-IAIF approach do not present with more stable behavior, nor is the technique with
better performance across the entire set of signals).

Concerning phonation type, our results mark a clear decrease in performance in terms
of the RMS for tenser phonations (e.g., creaky). The same trend was observed for IOP-IAIF
and GFM-IAIF by Perrotin and McLoughlin in [25] for low Rd values (a parameter that
correlates with phonation type). Furthermore, in terms of HRF and ST errors, these two
techniques also respond worse for tenser phonations, while IAIF obtains better performance,
as in [25]. However, it must be noticed that the four simulated phonation types along the
OPENGLOT Repository I do not represent specific values of this Rd parameter; additionally,
in the RMS error computation procedure reported in [25], the mean and scale normalization
process were not specified.

As a global trend, it can be noticed that QCP-based methods outperform their IAIF-
based counterparts. However, there are still some specific situations where IAIF-based
techniques obtain better results, e.g., in terms of HRF and ST for low F0 ranges or NAQ
for whisper phonation (in this last case, both the original IAIF and GFM-IAIF obtain
the distribution with the lowest values together with QCP). Nevertheless, it is worth
mentioning that QCP-based methods use extra information with respect to IAIF-based ones
due to the closing phase timings that are provided by the CGIs, which, in turn, are used as
input to define the AME function. This fact could partially explain the better performance
observed in QCP-based methods, together with the fact that CGIs are also used for glottal
error measure computation. However, when working on real speech data, the CGIs may be
difficult to extract, thus affecting the performance of the QCP-based approaches negatively.
This is a relevant issue that should be studied in future works.

In the present work, an extension of OPENGLOT Repository I was generated to
include vowels produced with female formant vocal tracts. By maintaining the same ranges
of exploration for the other signal attributes, like F0, vowel, or phonation type, we can
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study the influence of the formants in the inverse filtering results. However, it must be
appreciated that sex-related dependencies in other signal attributes, such as the F0 vocal
range, were not included in the study. As a general trend, our results revealed that the
performance of GIF methods decreases with female vocal tract signals with regard to male
vocal tracts for all error measures but H1H2. This worsening would probably increase if
the F0 vocal range was also adjusted to each type of vocal tract (male vs. female), which is
something that might be explored in future works.

The development and study of GIF methods has relied on the use of synthetic speech
because it provides a ground truth that facilitates the evaluation and comparison of GIF
methods, as well as the tuning of the GIF parameters. Nevertheless, in order to move to
the analysis of real speech (i.e., without ground-truth references of glottal flow signals),
other evaluation metrics should be considered. Furthermore, a strategy for the selection of
optimal GIF parameters should be devised.

Regarding the addition of expressiveness to the numerical generation of voice, previ-
ous works have been developed using ST-QCP to analyse the characteristics of GS and VT
in aggressive and happy female vowels [9,14]. However, the results obtained in the present
study suggest that maybe it would be better to use QCP without the spectral tilt correction
when dealing with female speech.

The analysis methodology followed in this study includes the tuning of GIF parameters
that was driven by a certain error metric. This error metric was defined as the MAE-Wave,
which accounts for differences in the glottal flow time-domain waveform, as in the works
by Mokhtari et al. [31] or Perrotin and McLoughlin [25]. However, the error metric can
also be defined as a weighted sum of different glottal error measures (e.g., including others
based on the frequency domain), similar to what Airaksinen et al. performed to determine
the AME function parameters of the QCP method in [28].

6. Conclusions

This work analysed the performance of state-of-the-art IAIF- and QCP-based glottal
inverse filtering methods on the OPENGLOT Repository I extended with female vowels.
The main conclusions are that QCP-based methods achieve the best global performance ac-
cording to the considered error metrics in addition to presenting with more stable behaviour
across sex, phonation type, F0, and vowels. These techniques present statistically significant
lower error metrics than their IAIF counterparts. As a general trend, the results obtained for
the female vowels are worse than those obtained for the male ones, except for H1H2.

When looking at results in terms of F0, the study reveals a worsening of performance
for high F0 values in several glottal error measures, such as RMS, NAQ and H1H2, with
this behaviour being even more prominent in female vowels for IAIF-based approaches.
Additionally, there is a general decrease in RMS and NAQ values when moving from tense
to lax phonations, and IAIF-based methods obtain poorer performances for specific vowels
(e.g., /i/ and /u/ for male data and /i/, /e/ and /æ/ for female data), with the QCP-based
counterparts being more stable across all vowels. Moreover, the IOP-IAIF and GFM-IAIF
variants outperform the original IAIF technique for most glottal error measures in male
vowels. Regarding the spectral tilt error, ST-QCP achieves a lower value for male vowels
than the original QCP, while the opposite occurs with female vowels.

Future work will consider the inclusion of vocal tract-based errors as additional error
measures for both GIF methods’ performance analysis and their tuning. Moreover, other
speech datasets that rely on physical modelling and/or real speech could be considered to
contrast the obtained results of the considered GIF methods and other similar approaches
following the designed analysis methodology. Finally, GIF results could also be analysed
accurately to model the specific glottal source and vocal tract patterns in order to provide
articulatory-based numerical simulations with the desired expressiveness using three-
dimensional realistic geometries.
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Abbreviations

The following abbreviations are used in this manuscript:

AME Attenuated main excitation

DQ Duration quotient

FEM Finite element method

GCI Glottal closure instant

GIF Glottal inverse filtering

GFM Glottal flow model

GS Glottal source

H1H2 difference in amplitude between the first and second harmonics

HRF Harmonic richness factor

HPF High-pass filtering

IAIF Iterative adaptive inverse filtering

IOP Iterative optimal pre-emphasis

LF Liljencrants–Fant model

LPC Linear predictive coding

MAE-Wave Median absolute waveform error

NAQ Normalized amplitude quotient

PQ Position quotient

QCP Quasi-closed phase

RMS Root-mean-square-error

RQ Ramp quotient

ST Spectral tilt

VT Vocal tract

Appendix A

Two tables are presented summarizing the ranges of parameters and the characteristics
of the datasets used in the papers present in the literature review of this study.
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Table A1. Summary of the datasets used for the evaluation of GIF methods in the papers of the

literature review, regarding the 5 methods evaluated in the present work. The ranges are written as

initial value:increment:final value.

Paper Pitch Vowels Type Sample Freq. Phonation Other

[17] 100:5:240 Hz 14 Synthetic (LF) 16 kHz
Oq: 0.3:0.05:0.9
αm: 0.55:0.05:0.8

SNR (dB): 10:10:80

[20] 60:20:180 Hz
/a/ /@/

/i/ /y/
Synthetic (LF)

Oq: 0.4:0.05:0.9
αm: 0.6:0.05:0.9

male

[20] Flat pitch /a/ Real Decreasing Oq

[22]

Two values for
the pitch period
for female
and male

/a/ Synthetic [36] 8 kHz
Breathy
Normal
Pressed

8th order
All-pole filter
Male
Female

[23]
F: 133–200 Hz
M: 67–100 Hz

/a/ /i/ Synthetic [36] 8 kHz
Male
Female

[24] /a/ Real
44.1 kHz down
to 8 kHz

Weak, breathy
Breathy Modal
Loud, slightly tense
Shouted & Tense

[25] 100:5:240 Hz 10 Synthetic (LF) 16 kHz Rd: 0.4-2.7

[25] Real

[26] Real
48 kHz down
to 16 kHz

Normal
Lombard

11 sentences
2 to 9 s

[28] 75:10:405
/a/ /e/
/i/

Synthetic (LF) 8 kHz
625 different
LF pulses

Optimize AME
8th order
All-pole filter

[28] 80:10:400
/e/ /o/
/æ/

Synthetic (LF) 8 kHz
4 LF values
interlaced with
the optim. set

Test set
8th order
All-pole filter

[28] 100:50:450
/a/ /i/
/ae/

Physical Model 8 kHz

Test set
Male
Female
5 year-old

[30] 90:30:210 Hz
/i/ /e/
/ε/ /ä/
/o/ /u/

Physical Model
Two-mass,
triangular-glottis
vocal folds and
transmission-line
vocal tract

48 kHz down
to 16 kHz

pressed
slightly pressed
modal
slightly breathy
and breathy

VocalTractLab 2.1
{500, 708,
1000, 1414,
2000}Pa
0.6 s

[30]

5 median
target
fundamental
frequencies

Utterances
derived

from: “Lea
und Doreen
mögen
Bananen.”

Physical Model
Two-mass,
triangular-glottis
vocal folds and
transmission-line
vocal tract

48 kHz down
to 16 kHz

5 median
voice qualities

VocalTractLab 2.1
125 utterances
5 median
pressure levels

[31]

92, 110, 131,
156, 185, 220,
262, 311, 370,
440 Hz

/a/ /æ/
/i/ /@/
/u/ /o/

Physical Model
4, 8, 12,
16 kHz

11 steps from
weak & breathy
to strong & pressed

Vocal tract and
trachea specified
by 44 and 34 cross-

sectional areas.
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Table A2. Summary of the GIF methods and the ranges of parameters evaluated in the papers of

the literature review regarding the 5 methods evaluated in the present work. Vocal tract order is

referred to as Nv, glottal source order as Nv, and lip radiation as d. The ranges are written as initial

value:increment:final value.

Paper IAIF IOP GFM QCP

[17]

Aparat default options
Nv = 10
Ng = 2
d = 0.99

[22]

Nv = 8:2:12
Ng = 2
d: Lip radiation effect
cancelled by integrating
the estimation of the
glottal flow derivative.

[23]

Nv = 10;
Ng = 4
d: Lip radiation effect
cancelled by integrating
the estimation of the
glottal flow derivative.

[24]
Nv = 8:2:18
Ng = 4
d = 0.8:0.01:0.99

Nv = 8:2:18
Ng = 4
d = 0.8:0.01:0.99

[25]
Nv = 14:2:22
Ng = 3:1:6
d = 0.8:0.01:0.99

Nv = 14:2:22
Ng = 3:1:6
d = 0.8:0.01:0.99

Nv = 14:2:22
Ng = 3
d = 0.8:0.01:0.99

[28]
Nv = 10
Ng = 4
d = 0.99

Nv = 10
Ng = 4
d = 0.99
DQ = 0.4:0.05:1
PQ = 0:0.025:0.2
RQ = 0:0.05:0.2

[30]
Nv = 20
Ng = 4

[31]

d = 0.75:0.001:0.999
Nv = 2:2:10 (4 kHz)
Nv = 6:2:14 (8 kHz)
Nv = 10:2:16 (12 kHz)
Nv = 14:2:22 (16 kHz)
Ng = 3:1:6

d = 0.75:0.001:0.999
Nv = 2:2:10 (4 kHz)
Nv = 6:2:14 (8 kHz)
Nv = 10:2:16 (12 kHz)
Nv = 14:2:22 (16 kHz)
Ng = 3:1:6

d = 0.75:0.001:0.999
Nv = 2:2:10 (4 kHz)
Nv = 6:2:14 (8 kHz)
Nv = 10:2:16 (12 kHz)
Nv = 14:2:22 (16 kHz)
Ng = 3

Appendix B

This appendix contains the Figure A1, which shows the medians of the GIF error
measures for each F0 value of the OPENGLOT Repository I range.
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Figure A1. Medians of the measures RMS, NAQ, H1H2, HRF, and ST between the estimated glottal flow

and the ground-truth signals for each evaluated GIF method as points, with quartiles 1 and 3 as errors

bars for each F0 in the corpus range. Columns shows results for the male and female subsets, respectively.

Appendix C

This appendix includes the results of the statistical analyses conducted to evaluate
to what extent the obtained error metrics for each GIF method and evaluated scenario
are statistically significant or not, according to the Wilcoxon signed-rank paired test with
Holm–Bonferroni correction.
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Table A3. Wilcoxon statistical analysis for errors by GIF method, * show statistical significant

differences with p > 0.05, while n represent non-significant differences.

Male Female

Error
GIF
Method

IOP-IAIF
GFM-
IAIF

QCP ST-QCP IOP-IAIF
GFM-
IAIF

QCP ST-QCP

RMSE

IAIF n * * * * * * *
IOP-IAIF * * * * * *
GFM-
IAIF

* * * *

QCP * *

NAQ

IAIF * * * * * * * *
IOP-IAIF * * * * * *
GFM-
IAIF

* * * *

QCP * *

H1H2

IAIF * * * * * * * *
IOP-IAIF * * * * * *
GFM-
IAIF

* * * *

QCP * *

HRF

IAIF * * * * * * * *
IOP-IAIF * * * * * *
GFM-
IAIF

n * * *

QCP * *

Spectral Tilt

IAIF * * * * * * * *
IOP-IAIF * * * * * *
GFM-
IAIF

* * * *

QCP * *

Table A4. Wilcoxon statistical analysis for errors by F0 range, where l m h denote low, mid and high,

* show statistical significant differences with p > 0.05, and n represents non-significant differences.

Male Female

Error GIF Method IOP-IAIF GFM-IAIF QCP ST-QCP IOP-IAIF GFM-IAIF QCP ST-QCP

F0 Range l m h l m h l m h l m h l m h l m h l m h l m h

RMSE

IAIF * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * n * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * *
QCP * * * * * *

NAQ

IAIF * * * * * n n * * * * * * * * * * * * * * * * *
IOP-IAIF n * n * * * n * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * *
QCP * * * * * *

H1H2

IAIF n * * * * * * * * * * * n * * * * * * * * * * *
IOP-IAIF * * * * * * * * * * * * * * * * * *
GFM-IAIF n * * * * * * * * * * *
QCP * * * * * *

HRF

IAIF * * * * * * * * * * * * * * * * n * * * * * * *
IOP-IAIF * * * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * *
QCP * * * * * *

Spectral Tilt

IAIF * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF n * * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * *
QCP * * * * * *
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Table A5. Wilcoxon statistical analysis for errors by phonation type, where c n b w denote creaky,

normal, breathy and whispery, respectively, * show statistical significant differences with p > 0.05,

while n represents non-significant differences.

Male Female

Error GIF Method IOP-IAIF GFM-IAIF QCP ST-QCP IOP-IAIF GFM-IAIF QCP ST-QCP

Vocal Effort c n b w c n b w c n b w c n b w c n b w c n b w c n b w c n b w

RMSE

IAIF * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF n * * * * * * * * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * *
QCP * * nn * * * *

NAQ

IAIF * * * * * * n * * * * n * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * * * * * * * * * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * *
QCP n * * * * * * *

H1H2

IAIF * * * * n * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * * * * * * * * * * * * n * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * *
QCP * * n * * * * *

HRF

IAIF * * * * * * * * * * * * * * * * * * * * * * n * * * * * * * * *
IOP-IAIF * * * * * * * * * * n * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * *
QCP * * * * * * * n

Spectral Tilt

IAIF * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * * * * * * * * * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * *
QCP * * * * * * * *

Table A6. Wilcoxon statistical analysis for errors by vowel, where i e æ a o u denote the vowel, * show

statistically significant differences with p > 0.05, while n represent non-significant differences.

Male Female

Error GIF Method IOP-IAIF GFM-IAIF QCP ST-QCP IOP-IAIF GFM-IAIF QCP ST-QCP

vowel i e æ a u o i e æ a u o i e æ a u o i e æ a u o i e æ a u o i e æ a u o i e æ a u o i e æ a u o

RMSE

IAIF * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * * * * * * * * * * * * * * * * * * * * * * * n * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * * * * * * * * * *
QCP * * * * * * * * * * n *

NAQ

IAIF * * * * * * * * * n * n * * * * * * * * * * * * * * * * * * * * * * * n * * * * * * * * * * * n

IOP-IAIF * * * * * * * * * * * * * n * * * * n * * * * * * * * * * * * * * * * *
GFM-IAIF * * n * * n * * n * * n * * * * * * * * * * * n

QCP * nnn * n * * * * * *

H1H2

IAIF * * * * * * nn * n * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF n * n * * n * * * * * * * * * n * * * n * * * n * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * * * * * * * * * *
QCP * * * * * * * * n * * *

HRF

IAIF * * * * * * * * * * * n * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * * * * * * n * * n * * * * * * * * * * * * * * * * * * * * * * * * * *
GFM-IAIF * * * * * * * * * * * * * * * * * n * * * n * *
QCP * * * * * * * * * * * *

Spectral
Tilt

IAIF * * * * n * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IOP-IAIF * * * * * * * * * * * * * * * * * * * * * * n * * * * * * * * * * * * *
GFM-IAIF * * n * * * * * * * * * * * * * * * * * * * * *
QCP * * * * * * * * * * * *
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