
Audio Engineering Society
Convention e-Brief

Presented at the 140th Convention
2016 June 4–7 Paris, France

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its
presentation, and the AES takes no responsibility for the contents. All rights reserved. Reproduction of this paper, or
any portion thereof, is not permitted without direct permission from the Audio Engineering Society.

	Implementation of Faster than Real Time
Audio Analysis for use with Web Audio

API: An FFT Case Study

Luis Joglar-Ongay1, Christopher Dewey2, and Dr. Jonathan P. Wakefield3

1 University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
L.JoglarOngay@hud.ac.uk

2 University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
C.Dewey@hud.ac.uk

3 University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
J.P.Wakefield@hud.ac.uk

ABSTRACT

There is significant interest in the audio community in developing web-based applications using HTML5
and Web Audio API. Whilst this newly emerging API goes some way to provide audio analysis in the web
browser it is limited to a relatively basic FFT with fixed Blackman windowing and no overlap facility.
Most previously documented solutions to this issue operate in real time. This paper demonstrates how to
perform more sophisticated, faster than real time FFT analysis for use within Web Audio applications. It
makes use of the Web Audio API and the dsp.js library. Academics and researchers can use this paper as a
tutorial to develop similar solutions within their own web based audio applications.

1. INTRODUCTION

The Web Audio API is defined by the WC3 as a “high-
level JavaScript API for processing and
synthesizing audio in web applications” [1] and is

increasingly being harnessed by developers, creative
technologists and musicians alike to develop interactive
online applications [2]. In its most simplistic form the
Web Audio API uses the concept of nodes, enabling the
user to connect a source node (audio input) to a
destination node (audio output) via a range of sub-
nodes. As part of our research, which focuses on

AES

Joglar-Ongay et al.

 Implementation of Faster than Real Time Audio
Analysis for use with Web Audio API: An FFT

Case Study

AES 140th Convention, Paris, France, 2016 June 4–7

Page 2 of 4

developing novel assistive tools for music production,
we have experimented with various aspects of the API
to develop applications. This tutorial focuses on our
exploration of performing Fast Fourier Transforms
(FFTs) on pre-recorded audio material in the web
browser and aims to provide a guide for researchers
wanting to explore these features of the API. The paper
starts by critiquing the features of API’s analyser node
before discussing other ways of performing FFTs in the
web browser. We then outline an alternative, more
sophisticated method for performing faster than real-
time (offline) audio analysis for researchers interested in
audio analysis. All our experiments were conducted
using Google Chrome [3].

2. THE ANALYSER NODE

Real time FFTs can be performed natively in the Web
Audio API by connecting a source node to a destination
node via an analyser node (named AnalyserNode in the
API) allowing the user to extract the FFT data in real
time. Unlike MaxMSP’s pfft~ object, the analyser node
is not capable of processing the audio in response to the
FFT analysis or performing an inverse FFT after
frequency domain manipulation. It’s also worth noting
that the analyser node is unique in that it will work with
or without a destination node connected [4].

The AnalyserNode has several properties that can be
defined. The FFT size can be set using the
AnalyserNode.fftSize property and the corresponding
number of FFT bins can be queried using the read only
property AnalyserNode.frequencyBinCount. The
AnalyserNode.smoothingTimeConstant property can be
set between 0 and 1 to provide a smoothing between
consecutive FFT frames. There are no properties
provided however to control the windowing function or
overlap which is fixed to a non-overlapped Blackman
window. This makes it arguably unsuitable for audio
processing.

The purpose of the analyser node (and arguably the
Web Audio API in general) has been subject to some
debate in online forums with regard to these limitations
[5]. It is apparent from these discussions that this node
has not been designed for DSP or audio
analysis/processing [5]. Rather, it is designed mainly to
be able to visually display the audio source in the time

and frequency domain in real time [6] and has been
widely used in the creation of music visualisations [7].

The Web Audio API features an offline audio context
[8]. In contrast to the well documented online context
the offline context renders the audio input’s data as fast
as possible to an audio buffer (named AudioBuffer)
using a callback. The PCM data can then be extracted
using the getChannelData method on the AudioBuffer.

In order to access and process the audio data the now
deprecated ScriptProcessorNode must be created in the
used audio context. This node provides the capability of
accessing every new buffer through the event
audioProcessingEvent to apply any Javascript algorithm
to the audio data [1].

This is scheduled to be replaced by the Audio Workers
for streamlined audio processing in the Web Audio API.
The Audio Workers are similar to the Web Workers
which bring multi-threading capabilities to this
traditionally single-threaded Javascript scripting
language. Although Audio Workers are defined in the
latest draft specification [1] at the time of writing no
browser supports their use.

We had hoped to perform faster than realtime audio
analysis this way, however, unfortunately there are
known issues surrounding using the AnalyserNode and
ScriptProcessorNode in the Offline Context with
rendered audio buffers [9, 10].

This presents audio developers with two problems.
Firstly, there is no means of performing faster than real
time audio analysis solely using the Web Audio API.
Secondly, the AnalyserNode is not appropriate for
performing serious DSP/audio analysis given the
limitations discussed above. The next part of this paper
outlines one solution to these issues.

3. FASTER THAN REAL TIME FFTS IN
JAVASCRIPT

Figure 1 below provides an overview of the algorithm
with each step described in this section. It is important
to note that the DSP.js [11] library has been used to
perform the windowing and FFT functions and is
required in order for this solution to work.

Joglar-Ongay et al.

 Implementation of Faster than Real Time Audio
Analysis for use with Web Audio API: An FFT

Case Study

AES 140th Convention, Paris, France, 2016 June 4–7

Page 3 of 4

Firstly the XMLHttpRequest() is called to upload the
audio file into an ArrayBuffer. Once the file has been
loaded the AudioContext.decodeAudioData() function
is called to decode the raw data from the ArrayBuffer to
an AudioBuffer that contains the audio information. The
PCM samples can then be stored in the browsers
memory using AudioBuffer.getChannelData(0). Now
the data is appropriately stored it is possible to loop
through the audio buffer and perform any operation as
fast as computationally possible.

Figure 1 Faster than real time FFT implementation

The following steps follow the standard windowed,
overlapped FFT process:

1. The audio buffer is split into a series of smaller
buffers of the desired FFT length and taking
into account the required overlap in the
extraction process.

2. Each of these smaller buffers is then windowed
and an FFT performed using functions
provided in the DSP.js library.

3. The FFTs from step 2 are stored in an array for
further use.

The JavaScript implementation of the above is available
for download from:

https://github.com/ljoglar/FasterThanRealTimeFFT

4. CONCLUSIONS
The Web Audio API was critiqued with regard to
performing FFT analysis. An alternative approach was
outlined that uses DSP.js in conjunction with the Web
Audio API for performing faster than real time FFT
analysis.

It is hoped that academics and researchers can use this
paper as a tutorial to develop similar solutions within
their own web based audio applications.

5. REFERENCES

[1] Web Audio Working Draft. Retrieved from
https://www.w3.org/TR/webaudio/ Date Accessed
23.03.16

[2] Chris Lowis Web Audio Weekly. Retrieved from
http://blog.chrislowis.co.uk/waw.html Date
Accessed 23.03.16

[3] https://github.com/GoogleChrome/web-audio-
samples Date Accessed 23.03.16

[4] AnalyserNode. Retrieved from
https://developer.mozilla.org/en/docs/Web/API/An
alyserNode Date Accessed 23.03.16

[5] https://github.com/WebAudio/web-audio-
api/issues/468 Date Accessed 23.03.16

[6] Visualizing Audio #1 Time Domain. Retrieved
from http://apprentice.craic.com/tutorials/30 Date
Accessed 23.03.16

[7] Exploring the HTML5 Web Audio: visualizing
sound. Retrieved from
http://www.smartjava.org/content/exploring-html5-

Joglar-Ongay et al.

 Implementation of Faster than Real Time Audio
Analysis for use with Web Audio API: An FFT

Case Study

AES 140th Convention, Paris, France, 2016 June 4–7

Page 4 of 4

web-audio-visualizing-sound Date Accessed
23.03.16

[8] Offline Audio Context. Retrieved from
https://developer.mozilla.org/en-
US/docs/Web/API/OfflineAudioContext

[9] https://bugzilla.mozilla.org/show_bug.cgi?id=1031
851 Date Accessed 23.03.16

[10] https://bugs.chromium.org/p/chromium/issues/detai
l?id=595032 Date Accessed 23.03.16

[11] dsp.js. Retrieved from
https://github.com/corbanbrook/dsp.js/ Date
Accessed 23.03.16

