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Abstract  

Gestural interaction for musical expression is of increasing interest within the music 

technology community, as shown by conferences like NIME. This paper describes the 

elements used to develop a gestural music expression interface by using day-to-day and 

machine learning technologies. Discussion on improvements and outlining of limitations and 

problems found in the process are also carried out. 
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Introduction 

The evolution of computing science, since Blaise Pascal created the first mechanical 

calculator in the 17th century, has lead to an increase of interest in areas like the machine 

learning and the human-computer interaction (Helander, Landauer, & Prabhu, 1997). These 

two areas build attention in the music technology community due the new capabilities these 

can introduce, especially in the field of EDM.  

Due to the fact that EDM music is mainly performed on a computer, expressivity 

during live performances is usually poor. Studies suggest that the public is getting used to 

this, an improvement in the expressivity of performances would increase the interest of the 

audience (Mitchell & Heap, 2011).  

This project aims to create a gesture based music expression interface based on day-

to-day technologies. To do so, an Android application will be developed using the 

information from the embedded sensors. The system will make use of machine learning 

algorithms to allow users to train the application to recognize their own gestures. Once the 

gestures are recognized, wireless communication with a computer will be established for 

interaction with music software. 

Chapter 1: Design and development 

1.1. Machine learning algorithms 

This project uses a machine learning external library for the training and recognition of the 

gestures, called Gesture Recognition Toolkit (GRT). This is an in-depth library offering a 

wide range of algorithms. A good understanding of these algorithms and their differences is 

important for choosing the appropriate for each circumstance.  
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1.1.1. Supervised vs. Unsupervised 

The two main algorithm groups for handling real-time patterns recognition are: supervised 

and unsupervised. 

Supervised learning refers to algorithms in which the training is done through a set of 

data values where the solution is already known. These algorithms rely on the idea that there 

is a relationship between the data and the result (Tucker, 2004). 

Two main types of supervised learning algorithms are defined as regression 

algorithms, in which the predicted result is a value within a continuous function, and 

classification, algorithms in which the solution is a discrete value from a set of categories. 

Unsupervised learning allows the system to predict or classify without previous 

knowledge of the results. These algorithms deduce categories by clustering the data or using 

other methodologies like Neural Networks. 

The main goal of this project is to train the Android application to recognize gestures 

created by the user. Users will record gestures and after the training, the system will 

recognize the gestures in real-time. That means the training data will contain the solution 

information and the output is a discrete value, therefore the types of algorithm of interest for 

this project are: supervised learning classification algorithms. 

 

1.1.2. Dynamic Time Warping (DTW) 

For gesture recognition, especially in musical applications, classification algorithms such as 

Hidden Markov Models and Artificial Neural Networks are the most commonly used (Joselli 

& Clua, 2009).  

Another, not as common but very effective, algorithm is the DTW. The main 

characteristic of DTW is the capability to ignore differences within the time domain. DTW is 

highly effective when the analysed data is a time-oriented function, and the differences in 

speed are a factor not to consider. 

An example of this would be the tempo. The training gestures are probably not going to 

be recorded at any specific tempo, but during the performances the user will, more likely, 
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move at the tempo of the song. For this reason DTW is the best algorithm choice for the 

project. 

 

1.2. Technical Aspects 

1.2.1. Android 

One of the main project aims was the use of every day technology instead of creating a 

specific device, for this reason it has been developed as an Android application. Android is 

the most extended operating system for smartphones. This makes it the best candidate for this 

development. 

A Java Software Development Kit (SDK) for Android is provided for free by Google. 

This SDK is equipped with the necessary tools for Android development in the form of a 

series of Application Programming Interfaces (APIs) to easily access and utilise all of the 

smartphone’s features and capabilities. A Java Integrated Development Environment (IDE) 

called Android Studio is also offered for free. This provides full access to the Android tools, a 

system to compile into the target device and also a device emulator and debugging tools. 

Android also allows developing applications, or part of them, in C/C++. A package 

called Native Development Kit (NDK), which includes a series of C++ APIs to access the 

smartphone capabilities, is also provided. These APIs are more limited than the Java ones, 

and are also more complex to use. 

 

1.2.2. Integration of GRT (Old NDK vs. New NDK) 

One of the biggest challenges during the development of this project was the integration of 

the GRT C++ library for gesture recognition into Android. 

The first step was the creation of an Android application with integrated C++ (native) 

libraries. Following instructions from the developer android website, (“Add C and C++ Code 

to Your Project | Android Studio,” n.d.) was fairly mild to add simple existing libraries or to 
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create a new one. These steps allowed the creation of a native library where new C++ code 

could be applied for use within this application. 

The first obstacle in the development process of this application was the inclusion of 

a complex C++ library by making it a native library. In order to learn what the procedure was, 

books and online resources were researched. All the information found was not up to date due 

to the continuous development of the Android operating system and the Android 

Development Studio.  

A decision was to be made, either use an older version of the Android environment 

where instructions were commonly available, or to use the newest version attempting to 

recreate the steps from the older version into the new system. 

It is arguable that the use of the latest stable development environment is 

recommendable. For that reason the second option was pursued. Two online resources where 

especially useful: 

• The first one is a tutorial using the old integration methodology to integrate 

the GRT in Android. (“Compilation du Gesture Recognition Toolkit sur 

Android,” n.d.) 

• The second one is an example of integrating a complex library into the new 

system. (“manimaul/AndroidNativeLibExample,” n.d.) 

By reproducing some of these steps into the latest system, following the new 

methodologies, and after several days of trial and error, the integration was accomplished. 

This process can be summarised in two steps: 

1. Portability of the library into the Java environment. This step allows the Java 

environment to understand the library. A file containing all the information 

needed by the system was created using a program called SWIG. This 

program uses as an input a file determining the address of all the files from 

the library needed. This file can be found in Appendix 1. The command line 

used to execute SWIG is as follows: 

swig -c++ -java -package com.example.ljoglar.swig -outdir 
../java/com/example/ljoglar/swig/ -o grt_wrap.cpp grt.i 
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Being grt_wrap.cpp the output file and grt.i the input file. 

 

2. Compilation of the C++ library. The addresses of all the files of the library 

together with the new file grt_wrap.cpp need to be added into the 

CMakeList.txt, so Android Studio can compile the library. 

The list of addresses needs to be added under the following command: 

 

 add_library( 
  # Sets the name of the library. grt-lib 
               # Sets the library as a shared library. SHARED 
   
  # Address list 
 ) 

 

  And at the end of the file its name has to be added into: 

  target_link_libraries( 
   # Specifies the target library.   
                              native-lib  
                  grt-lib 
                          android 
                          app-glue 
                          EGL 
                         GLESv1_CM 

# Links the target library to the log library                       
# included in the NDK. 

             ${log-lib} ) 

   

1.2.3. Accelerometer Data (SDK vs. NDK) 

One of the most important things in this project is access to the information that allows the 

application to identify the gestures made by the user. The sensors embedded in the 

smartphone provide this data. This project solely uses the accelerometer sensor, which 

provides information of the proper acceleration of the device in three axes. Proper 

acceleration refers to the acceleration of an object relative to a free fall (Taylor & Wheeler, 

1992). If an object is in free fall, the proper acceleration is 0, if an object is at rest, the 

acceleration in the vertical axis will be equal to the gravitational acceleration 9.81m/s2. This 

information is not very intuitive to interpret, but it can be understood as the acceleration of 

the device with respect to the user. 
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There are two ways to access the sensor data from the Android device: through the 

SDK API, or accessing it via NDK in the native library. As the data will be used in the native 

side of the program, the logical way to access this information is in the NDK. This procedure 

was attempted but due to the complexity of the native API, and the limited time to develop 

the project, the easier option was finally implemented that being the SDK access to the 

sensors. 

Once the Java side of the program reads the data from the three axes of the 

accelerometer, it is sent to the native side to be stored and utilized.  

 

1.2.4. GRT: Training the pipeline and real time recognition 

The GRT recognition system works around a class called “Pipeline”; this class provides the 

elements required to create a system that can learn to recognize gestures. The library also 

implements a class for each of the classification, regression and clustering algorithms that can 

be used. 

As this application uses the classification algorithm DTW an instance of it needs to 

be created in order for the pipeline to use its methods. 

 

 GestureRecognitionPipeline pipeline; 

 DTW dtw; 

 pipeline.setClassifier(dtw); 

 

Once the class for the algorithm is instantiated and set into the pipeline as the 

classifier algorithm, the training process can start. The pipeline object has the main 

functionalities needed to train the system and to recognize the gestures in real time. 

The next step is to create the data structure that is to be fed into the pipeline. The 

DTW needs the data from the sensors to be stored in a GRT data type called: 

TimeSeriesClassificationData (“Time Series Classification Data — NickGillianWiki,” n.d.). 

This data structure is used for supervised temporal based learning problems. This structure is 

constituted by an N-dimension time series of length M.  
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In this case the time series is an array of three dimensions, for the three axes of the 

accelerometer. The length will be determined by the sample frequency of the sensors and the 

duration of the gesture. This array of data is stored in a GRT type called MatrixFloat, which is 

a multidimensional array of floats. 

Every time a gesture is recorded, a new MatrixFloat is added into the 

TimeSeriesClassificationData with an identifier of the class label it belongs to. The class label 

identifies each gesture. 

The following code shows the initialization of the variables needed for the training 

and the main actions described. 

 int dimensions = 3;  

 TimeSeriesClassificationData trainingData;  

 trainingData.setNumDimensions(dimensions);  

 MatrixFloat trainingSample;  

 UINT maxClassLabel; 

 VectorFloat sample(dim); 

 

 trainingSample.push_back(sample); 

 

 trainingData.addSample(maxClassLabel, trainingSample); 

 trainingSample.clear(); 

 

Finally, once the TimeSeriesClassificationData has all necessary sets of data to train 

the system, the pipeline can be tought by calling its train method. 

 pipeline.train(trainingData); 

 

This function returns a boolean, allowing to check if the training was successful. 

Once the training is effective the real time recognition can start. The pipeline object offers 

two ways of recognition, both using the function Predict: one where a simple sample is passed 

in and a second one where the data is sent in blocks of samples. As the goal for this project is 

to use it in real time to interact musically with the performance, the latency of the system has 
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to be as small as possible. For that reason this application uses the first option, sending the 

samples into the Predict function every time the sensors is read. 

The Predict function returns true if a prediction has been made, false otherwise. 

When a prediction is made the class label of the recognized gesture is stored into the pipeline, 

and can be accessed by the method getPredictedClassLabel. 

 pipeline.predict(sample); 

 pipeline.getPredictedClassLabel(); 

 

1.2.5. MIDI vs. OSC 

The last stage of the application is the communication with the computer the performer will 

interact with. Android SDK provides MIDI communication protocol integration within the 

APIs, but this system works through a USB cable. To be able to communicate wirelessly, 

another Android API, to create a TCP/IP connection, is needed.   

Another option was the use of OSC instead of MIDI. A library called JavaOSC offers 

the possibility to communicate wirelessly to a target device connected in the same Wi-Fi 

network as the origin device. The library manages the TCP/IP connection just by knowing the 

IP address of the target in the network and the port the target device will listen to.  

As the JavaOSC facilitates wireless connection and the OSC protocol allows more 

flexibility of communication than MIDI, it was the implemented option. 

 

1.3. Architecture and Design 

In this section the main structure of the code will be described, alongside how the 

communication between the two development environments works. The flow of the 

application and the user interaction is also detailed. 
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1.3.1. High level structure 

As explained previously, this application is developed using two environments in continuous 

communication. The following figure shows the general flow of the application, and the 

communication between the NDK (or native libraries written in C++) and the SDK side of the 

program developed in Java. 

 

 

Figure 1. General flow diagram of the applicarion 

 

The data from the sensors is accessed from the Java side using the sensor’s API and is 

sent as floats into the native side where they are stored. This data is then and used to train the 

system, or used in real time to recognize the gestures already trained. Once a gesture is 

recognized a variable identifying the gesture is sent to the Java side that uses an external 

library to send an OSC message to a device to interact with it. 

 

1.3.2. Application Flow 

The following figure illustrates the flow of the application during the training phase. The user 

can start (and stop) recording data for each gesture. If the user dictates that the recorded data 

is not representative enough of the target gesture, they can discard the last trial before 

attempting again. Once the user has recorded the current gesture a few times, they can select 

the option to record a new gesture and repeat the process for each gesture they want to use. 

Once all the gestures are recorded, by pressing the train button, the system is trained with all 

the recorded data.  
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Figure 2. Flow diagram of the training process 

 

Once the application is trained the user can press the button Gesture It, to create a 

connection via TCP/IP protocol with the computer. To create this connection the two devices 

must be connected to the same Wi-Fi network. The IP of the computer must be determined in 

the settings of the application, along with the port the computer will listen to, to receive the 

messages. Once the connection is established the application will send an OSC message every 

time a gesture is identified.  
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Figure 3. Flow diagram of the real time recognition process 

 

1.3.3. Low level structure 

The code of the application is divided in three main files, each of them containing a class. In 

Android every window the application has needs a class to control all the graphical elements. 

The logic of the program is implemented as methods of these classes. The third file is the 

native library created to interact between the GRT library and the Java side of the Android 

application. 

In the Appendix 2 a class diagram of each of these classes can be found. 

MainActivity 

In the MainActivity class, all the logic for the buttons the user can interact with can be found. 

It also implements the methods used to read the information from the accelerometer and to 

send the data to the native library, as well as to create the TCP/IP connection and to create 

and send the OSC messages. The graph view where the graphs show the accelerometer data is 

also implemented and controlled from this class. 
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Main2Activity 

This class controls the graphical elements within the settings window. This information is 

sent to the native library where all of these values are saved and used to set parameters of the 

GRT. 

Native library 

In the native library the Gesture class is implemented. This class stores the instances of the 

GRT’s pipeline and classification algorithm used within the application. In this file several 

functions controlling the communication between the Java classes and the native library are 

implemented as well. These functions allow bi-directional communication with the Java 

classes. For this communication to work, these functions need to be declared in the Java class 

as well. 

The Gesture class also implements several methods that act as a middleman between 

the GRT pipeline and the functions that manage the communication with the Java side. 

 

Chapter 2: Evaluation and results 

The resulting application is considered to be a prototype rather than a final application. This 

means that the current state is not reliable enough to work under all circumstances. The 

application needs further testing and analysis of the characteristics that make gesture 

recognition reliable, to improve its consistency. That being said, the application works and 

can be used after some study and optimization; the user must try different gestures and 

settings to find the best calibration and movements. 

The following points will discuss and critically analyze the different aspects of the 

application that can be assessed to continue its development. Also some tests from a user 

perspective will be described and analyzed. 

These tests were carried out as part of the development process, rather than as a 

specific process itself. Their purpose was to find out if features in development worked as it 

was supposed to, or if the whole system was working properly after a new feature. 
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Further testing on alternative development decisions to empirically resolve the best 

option will also be discussed. 

 

2.1. Machine learning algorithm and GRT 

DTW is used as this algorithm is designed for finding patterns in data over time ignoring the 

differences in speed. The resulting recognition ratio is acceptable. Other real-time recognition 

algorithms like Hidden Markov Models and Gaussian Mixture Models are also implemented 

in the GRT. The author considered it would be worthwhile testing which one offers a higher 

ratio of recognition. 

As explained previously in section 1.2.4, the Predict function on the Pipeline object 

accepts two methods of inputting data. For this application the data is sent into the pipeline 

every time a new sample is read from the sensors. This was decided to obtain the fastest 

reaction to the gestures made by the user. It has been observed that the gestures are 

recognized before finishing the movement, providing a good reaction speed. 

A way to test the accuracy of the second option of the predict method without 

sacrificing reaction speed could be the creation of a circular buffer where the new sample was 

added every time. Then using this buffer for the prediction. 

It would be also interesting to learn more about how the predict function works, this 

would provide more options for improving the design. 

It is also considered important to continue studying the GRT to facilitate greater use 

of the library. The actual program makes a fairly basic use of the capabilities the GRT offers.  

2.2. Sensors 

This application uses the accelerometer installed within the smartphone. A better 

understanding of the different sensors the smartphones have embedded would also provide 

further methods to receive more data for gesture identification. 
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2.3. Sample Frequency 

The sample frequency is also a parameter that could be interesting to test. For this application 

a preliminary test was carried out along with some research, and it was found that a sample 

frequency of 33Hz provided enough information to recognize the gestures. 

Further testing on varying the sample frequency to find an optimal value without 

sacrificing latency time could be very useful to improve the accuracy of the recognition. 

 

2.4. User Interface 

The user interface was designed to respond to basic user interaction needs. A button-based 

design was implemented to allow the control needed for the training process and to start the 

real-time recognition. Some text views were added to provide some feedback. 

During the development the graph view was added to the interface. This provided the 

user with better feedback of the gestures made during the training phase. Thanks to this 

feedback, the feature to skip the last gesture recorded was introduced. This responds to the 

fact that during the recording mistakes can happen. This 

allows the user to discard that recording. 

Whilst the design of the interface responded to the 

needs during the development process, the small buttons 

clearly limit the action of the user during the training 

process. This is due to requiring a very specific action to 

start and stop recording the data. An interaction based on 

touch gestures made in a bigger area of interaction instead 

of buttons, would provide more freedom to the user. 

 

2.5. Gestures 

The gestures made by the user are of great importance 

because the application doesn’t react equally to every gesture. For that reason the user must 

Figure 4. User Interface for the application 
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test the application with different gestures in order to find the gestures that work best for 

them.  

Below an analysis of three gestures, with different resulting reliability, is carried out. 

The percentage of reliability has been determined by training the application with one gesture 

and replicating the gesture 25 times, measuring the amount of times the application 

recognizes it. These tests have been carried out by the author, it is arguable that the same 

gestures made by another user will get similar but different results. 

 

 

Figure 5. Representation of the axes of the accelerometer in a smartphone 

 

2.5.1. Gesture 1 

This gesture is made by holding the phone as shown in fig. 5 and rotating it around the X axis 

while moving the hand down and returning to the original position. 
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Figure 6. Diagram of the movement for gesture 1 

The following figure shows the accelerometer data from the three axes for a series of 

six trials doing this gesture. This data is stored and used to train the GRT pipeline. 

 

Figure 7. Graphs of the data from the three axes of the accelerometer for gesture 1 

It can be seen how the data of the X axis is quite stable around 0 as the Y shows how 

there is a deceleration followed by an acceleration, while the Z does the inverse. 
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This gesture is proven to be very reliable through out the tests. The graphs show a 

clear pattern with small differences. It is an easy move to make, and the ratio of recognition is 

very high, at 92%. 

 

2.5.2. Gesture 2 

The second gesture is made by holding the phone as shown in the figure 5 without any 

rotation whilst lifting the hand and returning to the start position as per fig. 8. 

 

 

Figure 8. Diagram of the movement for gesture 2 
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Figure 9. Graphs of the data from the three axes of the accelerometer for gesture 2 

As shown in fig. 9, the X axis oscillates irregularly around 0, making it more unstable 

than in the first gesture. The Y and Z axes follow the same pattern in this case, where they 

have two peaks in acceleration. The Y axis has more pronounced variations.  This second 

gesture is also quite reliable, but not as much as the first one with a percentage of 80%. It can 

be seen how the general pattern in this case is less consistent than in the first example. 

 

2.5.3. Gesture 3 

The last gesture is made by holding the phone in the same position as the previous gestures 

and rotating the phone on the Y axis. This is performed while exercising an external rotation 

of the shoulder and coming back to the original position. 

 

Figure 10. Diagram of the movement for gesture 3 
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Figure 11. Graphs of the data from the three axes of the accelerometer for gesture 3 

This last gesture is more complex. It is observable in the graph how in this case the Y 

axis is the one with the least acceleration change (due to it being the rotating axis), but it is 

not firm. The X axis has a recognizable but unsteady pattern, while the Z axis is the more 

unstable of the three. This last gesture is the least reliable of the three with a ratio of 52%. 

 

Similar tests to the previous have been carried out to analyse the flexibility of the 

recognition system. The ability to discard false positives when similar gestures are made has 

been identified. When a reliable gesture has been trained, the system is sufficiently flexible to 

recognize it with little differences, but discards similar gestures. For example doing the same 

movement but holding the phone in a different angle. 

 

2.6. Latency 

As discussed previously the design of the program has been made with the goal of having the 

smallest latency possible. It has been detected when more than six gestures are trained into 

the application, latency starts to increase. 
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Deeper studies on how the predict method in the Pipeline class works could allow 

finding solutions to diminish the latency problem. It would be interesting to test the results 

both in reliability, and in time, when using the second option of the Predict method, where a 

time series is passed instead of a single sample. 

 

2.7. Testing 

Through out the development of the application several test phases were carried out. Thanks 

to these, improvements on the algorithm have been implemented. 

• Likelihood filter. This is a filter to avoid false positives. After a gesture has been 

recognized the GRT assigns a percentage of likelihood for the movement made in 

relation to the data used for the training. The threshold for this filter can be modified 

on the fly in the settings window. 

• Trimming of the recorded data. The GRT provides a method to trim the recorded data 

from the sensors at the beginning and the end of the array. Two parameters can be set 

to adjust this option: a normalized threshold, and a maximum percentage. These two 

parameters where implemented as options in the settings window. 

• Timeout. The amount of milliseconds that the application will wait after a gesture has 

been recognized to continue recognizing. This parameter can be specified in the 

settings window. 

 

Chapter 3: Conclusions and further work 

This project aimed to develop a gestural music expression interface with day-to-day 

technologies. An Android application using the data from the embedded sensors in the 

smartphone to recognize gestures has been implemented. Machine learning technology is 

utilised to allow the user to train the gestures to be recognized within the application. Once 
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the system recognizes the gestures in real time (in order to musically interact with a device 

such a computer) a TCP/IP connection is created to send OSC messages in real time. 

The GRT, an in-depth library for gesture recognition using machine learning 

algorithms developed in C++, has been fully integrated into the Android environment. 

Whilst the main goal has been accomplished and the application works, 

improvements on the accuracy and reliability of the recognition system need to be carried out 

in order to develop an application that can be used by the general public. Through out the 

report, ideas on further study and alternatives to the current algorithm and design decisions 

have been proposed and discussed. Importantly, further study on the characteristics that make 

some gestures work better would provide useful information to improve the system making it 

a very interesting tool for musicians and performers. 

There are some features that would improve the application in order to be considered 

a finalised product: 

• System to save settings and gestures. 

• Possibility to send continuous control messages when not recognizing gestures. 

• Option to stop and resume recognition and OSC message communication. 
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Appendices 

Appendix 1 

File grt.i 
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Appendix 2 

Class diagrams of the three classes developed.  

public class MainActivity 
private SensorManager sensorManager; 
private Sensor accelerometer; 
private TextView textX; 
private TextView textTrain; 
private TextView textGesture; 
private TextView textTitle; 
private TextView textSubTitle; 
private boolean recording; 
private boolean gestureIt; 
private boolean isTrained; 
private GraphView graph; 
private List<Float> valuesX; 
private List<Float> valuesY; 
private List<Float> valuesZ; 
private LineGraphSeries<DataPoint> seriesX; 
private LineGraphSeries<DataPoint> seriesY; 
private LineGraphSeries<DataPoint> seriesZ; 
private final GestureRecognitionPipeline; 
public final String MyPREFERENCES = "MyPrefs"; 
private SharedPreferences preferences; 
SharedPreferences.Editor editor; 
private OSCPortOut oscPortOut; 
private String myIP; 
private int myPort; 
private boolean sendOSCMessage = false; 
private String addressOSC; 
private  ArrayList<Object> messageOSCArray = new ArrayList<Object>(); 
private float likelihoodThres; 
protected void onCreate(Bundle savedInstanceState) 
private OSCMessage writeOSCMessage() 
private void writeContentOSCMessage(int gestureLabel) 
private void initPreferences()  
private String getPreferenceS(String name) 
private int getPreferenceI(String name)  
private void newGestureJ()  
private int trainGestureJ() 
private void startRecordingData() 
private void stopRecordingData() 
private void gestureItJ() 
private void drawPlot() 
private void redrawPlot(List<Float> valuesX, List<Float> valuesY, List<Float> valuesZ) 
private void clearPlot() 
public void onSensorChanged(SensorEvent event) 
public void onAccuracyChanged(Sensor sensor, int accuracy) 

/* Native – Java  communication functions */ 
public native void readAccelerometerData(float accX, float accY, float accZ); 
public native void stopRecording(); 
public native void skipLastRecordedGesture(); 
public native int trainGesture(); 
public native void newGesture(); 
public native int gestureIt(float accX, float accY, float accZ); 
public native int getMaxClassLabel(); 
public native float getLikelihoodLastGesture(); 
public native float getLikelihoodThres(); 
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public class Main2Activity 
private long timeoutValue 
private float nullRejectionCoeffValue  
private float d = 100 
private float trimThresValue 
private float trimPercentValue 
private float likelihoodValue 
public static final String MyPREFERENCES = "MyPrefs" 
private SharedPreferences preferences 
SharedPreferences.Editor editor 
private EditText editIP 
private EditText editPort 
protected void onCreate(Bundle savedInstanceState) {  
private String getPreferenceS(String name){  
private int getPreferenceI(String name){  
private void setPreferenceS (String name, String value){  
private void setPreferenceI (String name, int value) {  

/* Native – Java  communication functions */ 
public native void setTimeout(long newCoeff) 
public native long  getTimeout() 
public native void setNullRejectionCoeff(float newCoeff) 
public native float getNullRejectionCoeff() 
public native void setTrimThreshold(float newTrimThres) 
public native float getTrimThreshold() 
public native void setTrimPercent(float newTrimPercent) 
public native float getTrimPercent() 
public native void setLikelihoodThres(float newThres) 
public native float getLikelihoodThres() 

 

class Gesture 
int dimensions = 3 
GestureRecognitionPipeline pipeline 
TimeSeriesClassificationData trainingData 
DTW dtw 
UINT maxClassLabel 
MatrixFloat trainingSample 
float trimThres = 0.1 
float trimPercent = 50 
unsigned long timeOut = 1000 
float likelihoodThreshold = 60 
Gesture() 
int getDimensions() 
UINT getPredictedClassLabel() 
Float getMaximumLikelihood() 
void setTrainingSet(VectorFloat sample) 
void setTimeout(unsigned long newTime) 
unsigned long getTimeout() 
void setNullRejectionCoeff(float newCoeff) 
float getNullRejectionCoeff() 
void setTrimThreshold(float newThres) 
float getTrimThreshold() 
void setTrimPercent(float newPercent) 
float getTrimPercent() 
float getLikelihoodThres() 
void setLikelihoodThres(float newThres)  
UINT getMaxClassLabel()  
void enableTrimTrainingSamples()  
void saveAndResetTrainingSample()  
bool trainGesture()  
void updateMaxClassLabel() 
void removeLastSample() 
bool gotTrained() 
bool predict(VectorFloat sample) 
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Other functions developed on the Native Library 

Communication between Native Library and MainActivity 

void Java_com_luisjoglar_gestureit_MainActivity_readAccelerometerData(JNIEnv *env, 
float dummy, float accX, float accY, float accZ)  
void Java_com_luisjoglar_gestureit_MainActivity_stopRecording(JNIEnv *env) 
void Java_com_luisjoglar_gestureit_MainActivity_skipLastRecordedGesture(JNIEnv 
*env) 
int Java_com_luisjoglar_gestureit_MainActivity_trainGesture(JNIEnv *env) 
void Java_com_luisjoglar_gestureit_MainActivity_newGesture(JNIEnv *env) 
int Java_com_luisjoglar_gestureit_MainActivity_gestureIt(JNIEnv *env, float dummy, 
float accX, float accY, float accZ) 
int Java_com_luisjoglar_gestureit_MainActivity_getMaxClassLabel() 
float Java_com_luisjoglar_gestureit_MainActivity_getLikelihoodLastGesture(JNIEnv 
*env)  
float Java_com_luisjoglar_gestureit_MainActivity_getLikelihoodThres(JNIEnv *env) 

 

Communication between Native Library and Main2Activity 

void Java_com_luisjoglar_gestureit_Main2Activity_setTimeout(JNIEnv *env, float 
dummy,  unsigned long newCoeff) 
unsigned long Java_com_luisjoglar_gestureit_Main2Activity_getTimeout(JNIEnv *env) 
void Java_com_luisjoglar_gestureit_Main2Activity_setNullRejectionCoeff(JNIEnv *env, 
float dummy,  float newCoeff) 
float Java_com_luisjoglar_gestureit_Main2Activity_getNullRejectionCoeff(JNIEnv 
*env) 
void Java_com_luisjoglar_gestureit_Main2Activity_setTrimThreshold(JNIEnv *env, 
float dummy,  float newThres) 
float Java_com_luisjoglar_gestureit_Main2Activity_getTrimThreshold(JNIEnv *env) 
void Java_com_luisjoglar_gestureit_Main2Activity_setTrimPercent(JNIEnv *env, float 
dummy,  float newPercent) 
float Java_com_luisjoglar_gestureit_Main2Activity_getTrimPercent(JNIEnv *env) 
void Java_com_luisjoglar_gestureit_Main2Activity_setLikelihoodThres(JNIEnv *env, 
float dummy,  float newThres) 
float Java_com_luisjoglar_gestureit_Main2Activity_getLikelihoodThres(JNIEnv *env) 
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