
Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

Applications of Essentia on the web

Luis Joglar-Ongay

Supervisor: Dmitry Bogdanov

August 2020

Copyright c©2020 by Luis Joglar-Ongay

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

Applications of Essentia on the web

Luis Joglar-Ongay

Supervisor: Dmitry Bogdanov

August 2020

Contents

1 Introduction 1

2 State of the Art 3

2.1 Libraries and what are these used for 6

2.1.1 Librosa . 7

2.1.2 Essentia . 8

2.1.3 Meyda . 10

2.2 Why Essentia in the Browser . 12

3 Methodology 14

3.1 How to have Essentia in the Browser 15

3.1.1 Compilation issues . 16

3.1.2 FFT libraries . 17

3.1.3 KEEPALIVE . 18

3.2 Benchmark and comparison . 18

3.3 Application using Essentia.js . 25

3.3.1 Detection of Audio Problems in Music 25

3.3.2 Custom extractors . 28

4 Results 33

4.1 Benchmark and comparison . 33

4.2 Application using Essentia.js . 42

5 Futher work and conclusions 44

5.1 Further Work . 44

5.2 Conclusions . 45

List of Figures 47

Bibliography 51

A Papers Citing Librosa 54

Bibliography 54

B Papers Citing Essentia 61

Bibliography 61

C Papers Citing Meyda 68

Bibliography 68

“I never think of the future - it comes soon enough.”

— Albert Einstein

“If I were not a physicist, I would probably be a musician.

I often think in music. I live my daydreams in music.

I see my life in terms of music.”

— Albert Einstein

Acknowledgement

Thanks to my colleague and friend Alex Albàs, for our shared moments of work and

passion. Maybe one day I can return the favour?

Thanks to my workmates, my friends and “the lads” for their support.

Thanks and congratulations to my fellow students Jorge and Alia for our ghost

pomodoros that led us to success.

Thanks to all the people from the MTG for sharing their passion for music and

technology, you all are an inspiration. Especially to my supervisor Dmitry and to

Albin, Pablo and Xavier for our work together these past two years. I hope we can

keep working and collaborating for a long time.

Thanks to my family for their help, interest, and support. Especially for their home

catering delivery service.

Abstract

Essentia.js, a port of the popular Open-Source C++ library Essentia, comes to the

web world to become the reference library to use together with the Web Audio

API. Whilst there are many libraries for audio analysis and feature extraction in

native computing languages, this Master thesis exposes the need of such a library

in JavaScript, and proposes Essentia.js as the best option to cover those needs.

The Music Information Retrieval community needs this tool to be able to develop

software and research using web technologies, to continue evolving and stay in the

state of the art.

Having compiled the C++ library into a JavaScript audio analysis library, a study

on the efficiency of the library is carried out by benchmarking the execution of

algorithms available in Essentia.js and comparing them to their equivalents from

Meyda.js, a library written in JavaScript.

Also, an application designed to be integrated into a production environment is

developed using Essentia.js to detect audio problems in music files uploaded to a

website. Helping improve the efficiency of the quality control process for digital

music distribution. The difficulties found in the process are enumerated and the

solution developed is described and demonstrated.

These steps, described in this Master Thesis, are part of a bigger project by the

Audio Signal Processing Lab at Music Technology Group of the Universitat Pompeu

Fabra, to turn Essentia into Essentia.js and ensuring the quality of the library.

Keywords: Web Audio; Audio Analysis; Audio Problems

Chapter 1

Introduction

Web technologies are evolving every day providing higher capabilities and becom-

ing one of the most used environments for software development. Javascript (from

now on, also as JS) is the most used programming language in 2020 according to

GitHub1 and StackOverflow2. Audio Signal Processing (ASP) and Music Informa-

tion Retrieval (MIR) development and research should follow this trend and jump

into the web.

Thanks to the release and to the continued development of the Web Audio API

the field of music and sound computing in the web is having a great evolution. It

is the moment to bring into the game tools that allow developers and researchers

to think of JavaScript and web technologies as any other language for their audio

projects. Ideally, these tools should be developed to be as powerful as the ones

already available in other languages such as C/C++ and Python.

All previous reasons motivated the exploration on how to use Essentia, an established

open-source C++ library for music and audio analysis, description and synthesis

developed by the Music Technology Group (MTG) of the Universitat Pompeu Fabra

(UPF), as a JavaScript library. This would enable it to be used both in the web

client or in other JS compliant platforms.

1https://madnight.github.io/githut/
2https://insights.stackoverflow.com/survey/2020

1

2 Chapter 1. Introduction

This Master thesis started alongside and as part of a bigger project by the Audio

Signal Processing Lab (ASP lab) of the MTG during summer 2019 with the previ-

ously mentioned goal of having Essentia working as a JS library. Due to the nature

of the project, the master thesis objective evolved along with the advances of the

main project.

In this report, you will find descriptions of the steps researched by the author. Start-

ing with the first steps into compiling Essentia from C++ to JS using Emscripten

and WebAssembly technologies, done parallelly by the author and other members

of the ASP lab. Continuing with a study of an application example using the audio

problems algorithms of Essentia into a web application. Finalising with a benchmark

study and comparison to Meyda, another audio feature extraction library written

in JavaScript.

As part of the main project of porting Essentia into the web technologies, even

though this is not part of this Master thesis report, the author collaborated with

the dissemination of the project by doing a talk called “Essentia in the browser” in

the Web Audio Conference in Norway in December 2019 [1]. Also collaborated in

the accepted and pending publication paper for ISMIR 2020 [2], contributing to it

mainly with the benchmarking and comparison with the Meyda library that will be

elaborated on in this thesis.

It is important to understand that the JavaScript version of the Essentia library is

still in beta and therefore there are still issues in its behaviour. For that reason,

studying its performance and finding the cases that work and the ones where excep-

tions are thrown or there are any bugs is crucial at this stage. These processes and

findings will be described and addressed together with the applications.

Chapter 2

State of the Art

Sound and Music Computing (SMC) is an area of research that started in the 1950s

but did not gain much attention until the 1970s when the first research groups

were born: the Center for Computer Research in Music and Acoustics (CCRMA)

at Stanford University, California, USA and the Institute for Research and Coor-

dination Acoustic/Music (IRCAM) in Paris, France [3]. Also in the 1970s the first

association and the first journal were founded, the International Computer Music

Association in 1974 and the Computer Music Journal in 1977. Sound and Music

Computing combines scientific, technological and artistic views with the research

goal of comprehending, modelling and synthesising sound and music using compu-

tational techniques [4].

It was not until the 1990s when the Music Information Retrieval (MIR) research

started gaining its name as a separate sub-field of SMC. According to the Sound and

Music Computing Network website1 MIR is considered to be an area of application of

the SMC research together with digital music instruments, music production, digital

music libraries, interactive multimedia systems, auditory interfaces and augmented

action and perception.

Other researchers define MIR in terms of a field where science, engineering and social

studies come together to research “the extraction, analysis, and usage of information

1http://www.smcnetwork.org/roadmap

3

4 Chapter 2. State of the Art

about any kind of music entity [...] on any representation level” [5], in other words,

“understanding music understanding” [6].

In 2005 J. Stephen Downie wrote for the Annual Review of Information Science and

Technology a chapter about what challenges Musical Information Retrieval faces

[7]. He described the MIR research as the study for the extraction and inference of

meaningful features from music [...] indexing of music using these features, and the

development of different search and retrieval systems or methodologies such as music

recommendation systems, classification of a large collection of music, content-based

search or designs to navigate through music collections [8].

He also analysed the main challenges of the MIR research, naming the one he con-

sidered the main one as the Multifaceted Challenge because these different research

facets are not mutually exclusive most of the time. He proposed a seven facets

approach to describe the different elements MIR research is composed of Pitch,

Temporal, Harmonic, Timbral, Editorial, Textual, and Bibliographic.

For Downie, this Multifaceted challenge together with the following four are the

reasons why MIR research is so demanding and difficult. He named and described

these challenges as:

• Multirepresentational Challenge: different ways to represent music

• Multicultural Challenge: different ways in which humans as societies under-

stand and express musicality over history

• Multiexperiental Challenge: different ways in which humans as individuals

experience music.

• Multidisciplinary Challenge: different approaches for MIR research

In 2014 Markus Schedl et. al published a study of the state of the art of MIR [9]

in which they describe the trends of this field of science. He proposed the following

division:

Applications MIR

5

• Music Retrieval

– Audio identification

– Audio alignment

– Cover Song identification

– Query by Humming and Query by Tapping

• Music Recommendation

• Music Playlist generation

• Music Browsing Interfaces

• Beyond Retraild

There is one thing though that all these trends in MIR have in common, also with

other SMC research. As described at the beginning, SMC research combines scien-

tific, technological and artistic methodologies to achieve their goals. It is the use of

technologies to study, analyse and extract useful information from music and audio

files that all these sciences have in common.

There are several approaches to get to this information, depending on the source

used and the technologies involved. Most of these can be classified into three groups:

• Data source: these are based on external data and meta-data not directly

extracted from the audio, such as databases and data sets.

• Feature representation: consist of the extraction of features from the audio

data that represent characteristics of the audio or music.

• Statistics and machine learning: feeding the audio data directly or not much

treated like the FFT into the ML or statistics system to extract results.

Computational MIR approaches typically use features and create models to describe

music by one or more of the following categories of music perception: music content,

6 Chapter 2. State of the Art

music context, user properties, and user context [9]. Music content refers to aspects

that are encoded in the audio signal, while music context comprises factors that

cannot be extracted directly from the audio but are nevertheless related to the

music item, artist, or performer.

In this master thesis, the focus is on tools that enable the extraction of features from

music content. There exist several technologies allowing this kind of operation. From

libraries to use in proprietary software such as MATLAB to others in the form of

plugins to use in software like Audacity or Sonic Visualizer like VAMP plugins. The

main interest of this thesis is Open Source libraries for use in software developed

in Python, C++ and JavaScript. These libraries are used both in research and

in industrial applications. There are a few libraries of this kind, but this study is

going to focus on the main two libraries used by the MIR community Librosa2 and

Essentia,3 and the currently most used and recognised by the web audio community

Meyda.4

2.1 Libraries and what are these used for

Two of the most used libraries in the MIR community are Librosa [10] and Essentia

[11]. Librosa is written in Python whilst Essentia is written in C++ with bindings

for Python, so both are very used in research Python developments.

The following study focuses on the topics researched making use of these libraries

and how have these been used. For this survey, the top 50 most cited papers citing

Librosa or Essentia in Google Scholar over the past 5 years have been reviewed.

This information can give us an overview of how researchers are using these types of

libraries in recent research, and maybe we can extract some tendency for the coming

years.

2https://librosa.org/
3https://essentia.upf.edu/
4https://meyda.js.org/

2.1. Libraries and what are these used for 7

Figure 1: Distribution of techniques used for MIR research in papers using Librosa.

2.1.1 Librosa

Librosa [10] is an Open Source under ISC license Python library for audio and music

processing presented in 2015 in the 14th Python in Science Conference. It is now in

its 0.8.0 version, what suggests it is not yet ready for production deployment, even

it being quite widely used in MIR research projects and has quite a big community

with more than 3800 stars and more than 640 forks in its GitHub page.5

Reviewing the papers using Librosa, as shown in figure 1 seems quite clear that

the most applied technology and techniques in MIR research over the past 5 years

are Machine Learning procedures with a clear focus on Neural Networks. Librosa

is mostly used to extract features from audio for this kind of experiment in more

than 75% of the reviewed papers. References to the reviewed papers can be found

in Annex A.

The most common use of the library is to extract features like Mel-spectrogram, Mel

band energies, and constant-Q transform to feed them to deep neural networks. This

technique is used for a variety of applications being the most popular ones: acoustic

scene and music genre classification, sound event detection, and speech synthesis.

5https://github.com/librosa/librosa (accessed 24/08/2020)

8 Chapter 2. State of the Art

(a) Word cloud of Librosa algorithms used in
the papers.

(b) Word cloud of the topics the papers re-
search was about.

Figure 2: Results of the review of the top 50 papers citing Librosa.

2.1.2 Essentia

Essentia [11] is an Open Source, under Affero GPL v3 license, C++ library for audio

and music analysis, description and synthesis. It has Python bindings to be able to

use it as a Python library. It was presented at the International Society for Music

Information Retrieval in Curitiba in Brazil in 2013. The latest release is the version

2.0.1, having the version 2.1 in Beta. It has more than 1600 stars and more than 370

forks in its GitHub repository.6 These numbers suggest that the community around

Essentia is about half the size of Librosa. Although in this case on the website7 there

is a section with several companies using the library in production environments.

Examining the top 50 papers using Essentia as their library to achieve their research

goals, the tendency over these past years to use machine learning methodologies in

particular deep neural networks is confirmed. Although in this instance it is not

as predominant as in the case of Librosa. Other methodologies and techniques are

used when it comes to studies choosing Essentia as their tool. Several papers from

this collection make use of high and low-level descriptors, as features to extract from

audio, to be used in different ways depending on the research. Some papers make use

6https://github.com/MTG/essentia (accessed 24/08/2020)
7https://essentia.upf.edu/

2.1. Libraries and what are these used for 9

Figure 3: Distribution of techniques used for MIR research in papers using Essentia.

of computational musicology methodologies, other multi-dimensional spaces to find

closer distances or knowledge graphs. The references for this 50 papers collection

can be found in Annex B.

Figure 4a shows the word cloud of the Essentia algorithms used in these papers. It

is noticeable how the variety is quite large compared to the word cloud in figure 2a

for Librosa. Mel-spectrograms and MFCCs are still the most used ones to feed

this information into the deep neural networks, but other algorithms like Melodia,

pitchYinFFT, loudness or key extractor are also used.

Comparing the word clouds of the topics from figure 2b and figure 4b, it is easy

to see how there are common topics, but it is also apparent how the variety of

topics is wider in the case of papers using Essentia than in the case of papers using

Librosa. Some of the main differences are papers presenting works on data sets

of several kinds and plugins to be used in other applications or frameworks and

libraries. Also, topics such as artificial reverberation and musical culture studies are

quite distinct.

10 Chapter 2. State of the Art

(a) Word cloud of Essentia algorithms used in
the papers.

(b) Word cloud of the topics the papers re-
search was about.

Figure 4: Results of the review of the top 50 papers citing Essentia.

2.1.3 Meyda

Meyda [12] is an Open Source library, under MIT license, for audio feature extraction

written in JavaScript. It can be used together with the Web Audio API or in plain

JavaScript, and both, offline or in real-time if used with the Web Audio API. It was

presented in the first Web Audio API Conference in 2015 in Paris. The latest version

is 4.3.1 and has 680 stars and 62 forks in its GitHub repository.8 The community

does not seem too big compared to Essentia and Librosa, one reason could be that

JavaScript and the Web Audio API are not yet very common technologies for the

MIR research community. It is quite known in the Web Audio community though,

having its own channel in the web audio slack,9 a community of developers with 939

registered users.10 There, authors, users and collaborators can discuss any issues

related to the library.

To review the papers using Meyda, a search at Google Scholar11 for papers citing

Meyda was done. It is quite astonishing to see how little the MIR community is

using web technologies. Only 20 papers appear in the Google Scholar search.

8https://github.com/meyda/meyda
9https://web-audio-slackin.herokuapp.com

10as of August 26, 2020
11https://scholar.google.com/

2.1. Libraries and what are these used for 11

From those, 15 only cite Meyda as an option of a library written in JavaScript

for audio analysis and feature extraction. Some are papers presenting other JS

libraries, others just reviews studying the state of art. A couple of these also criticize

some aspects of Meyda like that it is not modular nor easy to integrate with other

JavaScript modules [13] or the fact that it only has low-level descriptors [14].

From the other papers, three of them are ML-based and the only use they do of

Meyda is to extract MFCC to feed the models.

Another of the papers introduces a library written in JS for detecting synthesized

sounds [15]. In this case, Meyda is used to extract 17 audio features. The paper

only specifies two of them: the power spectrum and MFCC. The last one presents

an audience participatory sound art performance titled Precipitate. This work uses

Meyda to extract the features: “clarity, turbidity, pitchedness, strength, spectral

centroid, and loudness” [16]. The latest two are low-level descriptors developed in

Meyda but the paper does not describe how the first four high-level descriptors are

defined or extracted.

The reference to all these 20 papers can be found in Appendix C.

There are of course other JS libraries, but none of them is better either in perfor-

mance or in number of features than Meyda. Specifically, the next better known

JS library for feature extraction is JS-Xtract[17]. The GitHub repository of this

library12 has been paralysed without any activity whatsoever for more than two

years,13 indicating that there is no interest in continuing its development and sup-

port. Only 12 papers citing this library appear in Google Scholar. For those reasons,

this master thesis will only compare Essentia.js to Meyda. In a further chapter, the

comparison will go into discussing some implementation details and also a bench-

marking analysis.

12https://github.com/nickjillings/js-xtract
13accessed on 27-08-2020

12 Chapter 2. State of the Art

2.2 Why Essentia in the Browser

The reviews of Essentia and Librosa show how there is a big research activity in

MIR topics, with a growing tendency to use Machine Learning (ML) approaches

although having also a variety of methods outside ML. For those reasons having

comprehensive and easy to use libraries is important, to allow the community to

focus on their research instead of on the tools.

It is quite clear though, that for the MIR community there is a need to cover

when it comes to web technologies. While Meyda [12] and JS-Xtract [17] are at

the moment, to the best of the author’s knowledge, the most used and extensive

JavaScript libraries available for audio feature extraction, they offer a very limited

collection of algorithms.14 There is then the need for a comprehensive, modular,

and lightweight library, easy to use and integrate into any JS existing platform and

framework.That is what Essentia.js aims to cover.

From day one, the Web Audio API was designed to allow developers to write their

code in JS accessing the audio data both offline and in real-time. To do so off-

line the decodeAudioData function from the AudioContext object provides an Au-

dioBuffer with the PCM data of the audio file. This buffer can then call the Au-

dioBuffer.getChannelData() function to access the samples of a given channel passed

as a parameter [18].

For real-time audio processing development, the ScriptProcessorNode was the de-

signed solution. This node works like any other node in the web audio API by

connecting them in a node chain. The main particularity of this node is that it

gives access to the audio data to the developer to apply any processing algorithms

coding directly in JS. This node is now deprecated as it worked running the JS audio

processing code in the main UI thread. This can lead to issues in the performance

and sound glitches, drop-outs, and stuttering [19]. To fix this, the W3C Audio

Working Group15 proposed the Audio Worklet [20] as a solution. It allows the audio

14As of August 2020, Meyda only has 20 MIR algorithms.
15https://www.w3.org/2011/audio/

2.2. Why Essentia in the Browser 13

processing code to run in a separate audio thread while there are bidirectional open

communications between the two threads.

The web audio community is stronger every day and the continuous evolution of the

Web Audio API confirms so. Several websites are using these technologies as the

core of their business like Soundtrap.16 Others are integrating their services with

these technologies like Yamaha17 and Dolby.18 However, there is still a tendency to

develop musical web services having their audio processing in the backend side using

technologies such as Java, C/C++ or Python and then sending the information to

the browser. Some examples would be Spotify API(formerly Echonest),19 Gracenote

(Sony),20 ACR Cloud21 or Freesound API [21] and AcousticBrainz [22].

Changing this paradigm from doing the computation process in the server to the

browser can offer great advantages to web services, as this way the intense part of

the computation process is distributed in the web browsers of the users and it is not

using any CPU power nor memory from the server.

For these reasons, Essentia.js is a strong candidate to be a reference library for

the web audio and MIR communities. It offers a library modular and very easy to

use, with a comprehensive set of algorithms for audio and music feature extraction,

processing and even synthesis in the web technologies ecosystem, working both on

the browser together with the Web Audio API or in any JS-based server.

The main ideas of the Essentia.js project together with a short demo were included in

a talk done by the author at the fifth Web Audio Conference in Norway in December

2019, receiving great interest from the assistants.

Full details on the design, architecture and steps for the compilation process to

turn Essentia into Essentia.js can be found in a paper pending publication by Albin

Correya et. al [2].

16aurlhttps://www.soundtrap.com/
17https://soundmondo.yamahasynth.com/
18https://developer.dolby.com/platforms/html5/code/
19https://developer.spotify.com/documentation
20http://devapi.gracenote.com/timeline/
21https://docs.acrcloud.com/docs/acrcloud/

Chapter 3

Methodology

As explained in the previous chapter Essentia has a big potential of becoming a key

tool for audio processing and MIR software in the web technologies world. The first

step to achieve having Essentia working with JavaScript was to be able to compile

its C++ base code using Emscripten [23] to have it as a WebAssembly binary [24]

together with the glue code in JavaScript to be able to call the functions.

Once the compilation of Essentia was working, the next steps were to be considered.

After some consideration, the following two were chosen:

• Use of the library by developing examples and real software to test its usability

and reliability.

• Benchmarking common MIR use cases to test it’s efficiency and compare it to

other JavaScript libraries, in this case, Meyda.

These two points were considered from the perspective of testing the new implemen-

tation of the library to find where it works as desired and where there were flaws

that need careful thought and improvement.

In this chapter, you can find the methodology used for each of these steps.

14

3.1. How to have Essentia in the Browser 15

3.1 How to have Essentia in the Browser

As mentioned before the technologies used for the compilation process of Essentia

into Essentia.js are Emscripten, to compile into WebAssembly and Embind to create

the bindings.

Emscripten [23] is a toolchain that allows compiling C and C++ code to JavaScript,

more specifically ams.js which is a subset of JS corresponding almost to machine

instructions, or to WebAssembly making it possible to run native code on the web

at “near-native speed”.

WebAssembly [24] (or Wasm) is an open standard designed by the W3C and im-

plemented and maintained by Mozilla, Microsoft, Google, Apple, Fastly, Intel, and

Red Hat. It is developed to enable high-performance applications usually written

in native languages into the web. It defines a binary instruction format and a pro-

gramming language, being this the fourth language to run natively in web browsers

together with HTML, CSS and JavaScript. Its main use is as a portable compiler,

so you can have code written in languages like C, C++, Rust or Go among others

and deploy them on web pages.

The first step of this thesis involved the research on how to effectively use the

Emscripten compiler to be able to have Essentia compiled into a wasm binary to,

afterwards, through the bindings done with Embind access from JavaScript the C++

functions. The figure 5 illustrates the process to follow to compile Essentia into a

JS library

This research was carried out in parallel by Albin Correya1 a member of the ASP

Lab of the MTG. The final way to compile Essentia.js was developed by Albin. For

that reason in this report, this research is not explained with full details other than

some difficulties the author found in the process that were finally fixed or worked

around. The instructions on how to compile Essentia into Wasm can be found in

the Essentia.js documentation website.2

1https://github.com/albincorreya
2https://mtg.github.io/essentia.js/docs/api/tutorial-2.%20Building%20from%

20Source.html

16 Chapter 3. Methodology

Figure 5: Basic flow diagram of the process to have Essentia in the browser

3.1.1 Compilation issues

Path to emcc

At the beginning of the research, due to a lack of acknowledgement of the compilation

process of Essentia both native and with Emscripten, the configure process [25] was failing

to find the compiler.

The first trial to attempt to fix this issue was to specify the GCC path to the compiler,

doing it as shown in listing 3.1.

emconfigure sh -c ’./waf configure CXX=/usr/bin/g++-7 CC=/usr/bin/

gcc -7 --prefix=$EMSCRIPTEN/system/local/ --build -static --

lightweight=fftw --emscripten ’

Listing 3.1: emconfigure command with paths to gcc7.

Of course, this was not the solution because the emcc compiler, this being the Emscripten

compiler, needs to be used. This was fixed by giving access to the emcc path to emscripten

adding it to the batch profile.

The argument to ’-O’

There was another issue with the ’wscript’ configuration file. When compiling the error in

listing 3.2 appeared.

The ‘-O’ option is to set compilation optimizations. The compiler tries to reduce code

size and execution time. The arguments ‘0’, ‘01’, ‘02’ and ‘03’ set different levels of opti-

3.1. How to have Essentia in the Browser 17

cc1plus: error: argument to ’-O’ should be a non -negative integer ,

’g’, ’s’ or ’fast’

Listing 3.2: Error thrown about argument -O.

mization from lower to higher3, ‘s’ optimizes for size, ‘g’ optimizes debugging experience

and ‘fast’ enables all 3 optimizations and other ones that are not valid for all standard-

compliant programs.

So the issue was that the argument ‘z’ wasn’t recognized by Emconfigure. No documen-

tation was found on the argument ‘z’.

To fix it the argument ‘-Oz’ was changed by ‘-O3’. In the final version though, it is back

to the original value, due to the following case fixing also this issue.

Fail to compile LLVM bitcode

The next error appeared during the compilation process. At this point, there was an issue

compiling the code into LLVM bitcode. The message was the one shown in listing 3.3

ERROR root: compiler frontend failed to generate LLVM bitcode ,

halting

Listing 3.3: Error thrown when failing to build LLVM bitcode.

Researching over the internet similar errors, it was suggested that there was something not

properly configured in Essentia compilation files.

Finally, this was fixed by Albin Correya, a member of the ASP Lab of the MTG, by

updating the waf version used to compile Essentia. And by adding to the .waf file the

command ./waf-light –tools=c_emscripten . As can be seen in the Essentia repository’s

issue number 806.4

3.1.2 FFT libraries

FFTW5 is a C library for computing the discrete Fourier transform (DFT) in one or more

dimensions. Following the Essentia compilation guide6 FFTW is a dependency of Essentia.

3https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
4https://github.com/MTG/essentia/issues/806
5fftw.org
6https://essentia.upf.edu/installing.html

18 Chapter 3. Methodology

The command in the listing 3.4 would be the one used to compile Essentia with Emscripten

using FFTW as FFT library.

emconfigure sh -c ’./waf configure --prefix=$EMSCRIPTEN/system/

local/ --build -static --lightweight=fftw --emscripten ’

Listing 3.4: Emconfigure command with fftw.

When trying to compile Essentia with that command to have Emscripten using FFTW it

does not work. It is needed to change the FFT library to KissFFT as shown in listing 3.5

emconfigure sh -c ’./waf configure --prefix=$EMSCRIPTEN/system/

local/ --build -static --lightweight= --fft=KISS --emscripten ’

Listing 3.5: Emconfigure command with fftKISS.

3.1.3 KEEPALIVE

While exploring options to compile Essentia with Emscripten, an option provided by the

latter was considered by the author. This option consists of adding a tag “KEEPALIVE”7

next to the function definition target, forcing this way LLVM to not dead-code-eliminate

the function, exporting it then to the functions available to be called from JS [26].

This option has as a pro that avoids the need of having to create bindings for all the

functions between the compiled wasm and JS. As a big con though, it would mean having

to modify the entire C++ library, adding the tag KEEPALIVE to every function we would

want to use in JS.

While testing this option the errors shown in the listing 3.6 where thrown by the compiler:

Before finding a solution, an alternative working way was found leaving this option without

a complete exploration, as it was considered worst due to having to modify too much the

C++ library.

3.2 Benchmark and comparison

It was considered very important for the project to be able to measure the performance

of the algorithms compiled into Essentia.js. As the main idea of having Essentia ported

7https://emscripten.org/docs/api_reference/emscripten.h.html?#c.EMSCRIPTEN_

KEEPALIVE

3.2. Benchmark and comparison 19

shared:WARNING: object /tmp/emscripten_temp_iXqdK5_archive_contents

/algorithm.cpp .1.o is not a valid object file for emscripten ,

cannot link

shared:WARNING: object /tmp/emscripten_temp_iXqdK5_archive_contents

/essentia.cpp .1.o is not a valid object file for emscripten ,

cannot link

error: undefined symbol: _ZN8essentia4initEv

error: undefined symbol: _ZN8essentia8shutdownEv

error: undefined symbol:

_ZN8essentia15EssentiaFactoryINS_8standard9AlgorithmEE9_instanceE

[...]

Listing 3.6: Error when compiling with KEEPALIVE.

into the web was to be able to use it in web pages using the capabilities of the browser

a website was built to measure its behaviour and efficiency across different browsers and

devices. This way only by accessing a website the measurements could be run.

Benchmarking website

The library used for the benchmarking is Bencharck.js.8 This library allows high-resolution

time measurements and provides statistical results. It has one dependency: lodash.js9 a

library that provides utilities to work with arrays, numbers, objects, strings, etc. Plat-

form.js10 a library that provides information about the JS platform the code is run into

will be needed if this information needs to be added to benchmark data. It is not used in

the current version of the code but will be added, as this information is very useful and

currently annotated manually.

The library works by creating suites of tests to measure. A suite for each candidate

algorithm is created. In the case of algorithms to be compared against its equivalent from

Meyda, each library algorithm has a test of a suite.

So basically by using the method ’add’ from the Suite object, a test is created where the

code we want to measure is the one inside the function sent as a parameter. A suite

developed to measure the energy algorithm is shown in the listing 3.7.

8https://benchmarkjs.com/
9https://lodash.com/

10https://github.com/bestiejs/platform.js

20 Chapter 3. Methodology

suite.add(’Meyda#ENERGY ’, () => {

for (let i = 0; i < audioBuffer.length/HOP_SIZE; i++) {

Meyda.bufferSize = FRAME_SIZE;

let frame = audioBuffer.getChannelData (0).slice(HOP_SIZE*i,

HOP_SIZE*i + FRAME_SIZE);

let lastFrame;

if (frame.length !== FRAME_SIZE) {

lastFrame = new Float32Array(FRAME_SIZE);

audioBuffer.copyFromChannel(lastFrame , 0, HOP_SIZE*i);

frame = lastFrame;

}

Meyda.extract ([’energy ’], frame);

}

}, options)

.add(’Essentia#ENERGY ’, () => {

switch(frameMode){

case "vanilla":

for (let i = 0; i < audioBuffer.length/HOP_SIZE; i++) {

let frame = audioBuffer.getChannelData (0).slice(HOP_SIZE*i,

HOP_SIZE*i + FRAME_SIZE);

if (frame.length !== FRAME_SIZE) {

let lastFrame = new Float32Array(FRAME_SIZE);

audioBuffer.copyFromChannel(lastFrame , 0, HOP_SIZE*i);

frame = lastFrame;

}

essentia.Energy(essentia.arrayToVector(frame));

}

break;

case "essentia":

const frames = essentia.FrameGenerator(audioBuffer.

getChannelData (0), FRAME_SIZE , HOP_SIZE);

for (var i = 0; i < frames.size(); i++){

essentia.Energy(frames.get(i));

}

break;

}}, options)

Listing 3.7: Code for the Energy algorithms.

3.2. Benchmark and comparison 21

Another interesting feature of the benchmark.js library is that there are several ’on’ events

to bind functions to. The following ’on’ events are used in the website code:

• ’cycle’: to send log messages to the console to be able to control the progress of the

suite.

• ’start’: to add the class ’is-loading’ to the button so in the UI is shown that a process

is going on.

• ’complete’: here is done everything that needs to be done once the suite is finished.

Print in the UI the fastest algorithm, remove the ’is-loading’ class from the button,

show the table with the results the library returns, plot the violin distribution using

plotly.js,11 and download the results in a JSON file.

Finally, to run the suite the function ’run’ is called. Once the run function is called, the

system executes the tests in the suite as many cycles as is set, in this case just one. One of

the most important features in benchmarck.js is that it is designed to provide significant

information [27]. For instance, it is designed to do the minimum number of repetitions of

each test per cycle to achieve a result with a per cent uncertainty of 1% or less.

In the UI of the website, there are some options to choose.

• Repetitions. It is optional. If it is not filled in the application works with the default

behaviour of the library. The library doesn’t have an option to customise the number

of repetitions per cycle. Nevertheless, after researching if there was a way to do it,

an answer in StackOverflow [28] provided the solution. In the listing 3.8 you can see

how it works. By setting the ’mintime’ and ’maxtime’ to a negative number and

setting ’initCount’ to 1 then ’minSamples’ become the number of repetitions. This

is not recommended even by the same people proposing the method, but in our case,

we wanted to be able to compare the algorithms using the same behaviour than the

benchmark library used in python for the native version of Essentia.

11https://plotly.com/javascript/

22 Chapter 3. Methodology

const options = repetitions ?

{

minSamples: repetitions ,

initCount: 1,

minTime: -Infinity ,

maxTime: -Infinity ,

}

: {};

Listing 3.8: Options to set the number of repetions per cycle in benchmarck.js.

• Audio Duration. The website provides four samples with different duration to do

the test.

• Upload Audio. With this option, a custom audio is uploaded. The previous Audio

Duration option is ignored.

• Download Results. If checked, once the suite is done the results are downloaded to

a JSON file.

• Use the Essentia FrameCutter algorithm. Whether to use the frame cutter algorithm

or a JS for loop to divide the buffer in frames.

Another test case was using Node.js.12 Node.js is an open-source JavaScript runtime

framework to execute JS outside the browser[29]. It is built on Chrome’s V8 JavaScript

engine. It is commonly used as a server-side technology for web applications.

Benchmarking Node.js was considered because it is a very common platform to develop

JavaScript modules and applications outside of the traditional web browser. The same

Benchmark.js library and the same approach as explained was used for the test cases

implemented to run in Node.js.

The code for this benchmarking website is open-source under license Afero GPL and can

be found in the MTG repository.13 Node.js test cases can be found and executed from the

folder ’node’. A website is available14 to replicate the test suites.

12https://nodejs.org/en/
13https://github.com/MTG/essentia.js-benchmarks
14https://mtg.github.io/essentia.js-benchmarks/

3.2. Benchmark and comparison 23

Real-time

The benchmarking of the library using it in real-time was also considered. After spend-

ing some time designing the system and starting the code implementation, the author

realised it was not worth it as it wouldn’t provide new information. Real-time algorithm

implementation in Web Audio API works by sending each frame of audio to the ScriptN-

odeProcessor (or to the Audio Worklet) for the required process to be done and sending

the results through the chain to the destination. If all this process is done in less time than

the time between frames, the real-time audio will work fine without glitches or delays.

Due to that nature, benchmarking any algorithm used in real-time will result in measuring

the time the song lasts instead of how much the algorithm takes to process the song. The

only way to measure the effective time the algorithm is working is to measure the time for

each frame and add them, but that would be the same as a benchmark in offline mode.

To ensure that the algorithms can work in real-time, the only measurement needed is with

a frame. If the time needed to process a frame when it arrives at the ScriptNodeProcessor

(or the Audio Worklet) and returns the values is smaller than the time between one sample

and the next one, then the algorithm can be used in real-time.

That is what Hugh Rawlinson et al. [12] did to justify that Meyda algorithms could be

used in real-time. “[...], we ran benchmarking on Meyda to confirm that it was running

faster than real-time audio on a relatively standard device.”

Issues in iOS

When executing the benchmarking in iOS it didn’t work. There wasn’t any apparent error,

so debugging was needed. To be able to debug a browser in iOS from a Linux computer

with Chrome or Firefox, it is needed to install a proxy called iOS WebKit Debug Proxy15

that listens to the usbmuxd daemon over a WebSocket connection, allowing bidirectional

communication.

Once the debug system is working, the error in the listing 3.9 message is:

After researching what this error could be caused by, it seems that the browsers in iOS

have issues with the Audio Context from the Web Audio API and therefore the applica-

15https://github.com/google/ios-webkit-debug-proxy

24 Chapter 3. Methodology

Unhandled Promise Rejection: TypeError: Not enough arguments

Listing 3.9: Error thrown form iOS.

tions using the standard Audio Context do not work. There is though, a library called

standardized audio context16 that recreates the Web Audio API whilst fixing the errors in

iOS. It supports the following browsers: Chrome v81+, Edge v81+, Firefox v70+, Opera

v68+ and Safari v12.1+, as of August 2020.

Once this library was installed and the Web Audio API was working, another issue was

found. In this case the debugging previously described wasn’t giving any information and

the behaviour in the iOS device was that after a while executing a test suite the web page

refreshed itself.

In this case, it was needed to connect the iOS device to a Mac computer to debug the

website using safari in both devices. Doing so the error in listing 3.10 was found.

Error] emscripten_realloc_buffer: Attempted to grow heap from

741277696 bytes to 842006528 bytes , but got error: Error: Out of

memory

emscripten_realloc_buffer (essentia -wasm.web.js :27:136622)

_emscripten_resize_heap (essentia -wasm.web.js :27:137466)

wasm -stub

<?>.wasm -function [7493]

[...]

<?>.wasm -function [7602]

wasm -stub

(funcio anonima) (essentia -wasm.web.js :27:32815)

dynCall_iiiiii_210 (Script anonim 1 (linia 3))

EssentiaJS$FrameGenerator (Script anonim 2 (linia 10))

(funcio anonima) (suite_energy.js:66)

[...]

run (benchmark.js :2114)

execute (benchmark.js :860)

(funcio anonima) (lodash.min.js:26)

Listing 3.10: Error: Out of memory.

This error was caused then by the browser running out of memory to do the benchmarking

process. Thanks to the option “Repetitions” were the user can set the number of repetitions

to be carried out for each test per cycle, the benchmarking in iOS could be done. It was

done doing only 5 repetitions per algorithm. These results are not statistically as significant

16https://github.com/chrisguttandin/standardized-audio-context

3.3. Application using Essentia.js 25

as the rest of cases, but at least they provide an accurate enough idea of the times for the

browsers in iOS.

3.3 Application using Essentia.js

Once Essentia has been successfully ported to Essentia.js, being now a JS library to use in

the web, starting to use it by integrating it in web applications is a key next step for the

project. It is very important to start utilising the library in real cases to find out to what

extent it is reliable and whether there are points to fix and improve.

3.3.1 Detection of Audio Problems in Music

The idea of this part of the project is to build an application that could fit the requirements

of a minimum viable product (MVP) for a project for SonoSuite. SonoSuite (or SNS) is

a company that offers a Software as a Service in the form of a web platform for digital

music distribution. The web application allows its users to create and manage their music

catalogue, creating their albums and uploading their music. Then they can distribute

their releases to several digital service providers (DSP) such as Spotify, Apple Music,

Youtube Music and many others around the world. The service SNS offers also includes

the management of the royalties generated from the music.

It is of critical importance to ensure that the music sent to the channels is within the

music industry quality standards. For this reason, SonoSuite has a Quality Control (QC)

department in charge of ensuring that. The methodology used for the Quality Control

agents is nothing better than manual operations, therefore it is very time consuming and

prone to mistakes. To improve this situation and to provide a helping tool to the QC

agents, SonoSuite started to look for automatization of the process.

With that goal in mind, along 2018 and 2019 SonoSuite and the MTG collaborated in a

research project intending to develop algorithms in C++ as part of Essentia that allowed

the detection of audio problems in music files. The results of this project end up being

presented in a paper called Automatic Detection of Audio Problems for Quality Control

in Digital Music Distribution [30] at the 146th Audio Engineering Society Convention in

Dublin in March 2019.

26 Chapter 3. Methodology

Now that these algorithms are available in Essentia and therefore in Essentia.js a new

opportunity arises for SonoSuite. Following the change in paradigm explained in section

2.2, thanks to having these algorithms ready to be used in the clients’ browser, now the

audio problems can be detected before the songs are sent to the server. This way the

platform can inform the client right away if their song has any issue they need to take care

of before uploading the audio master to be checked by the QC team. This will help fasten

the process both for the SNS team and for the clients.

The specifications for the MVP would be:

• Render the waveform of the audio file

• Process some audio problems algorithms for the audio file in the browser

• Highlight the zones where audio problems have been found

• A legend explaining the relation between colours of the highlighted areas and the

audio problems.

Implementation of the application:

• UI of the application: The application is very simple, it consists on a section at

the top where the audio waveform will be rendered once the song is loaded and

just under it a buttons section with 4 buttons: play/pause, stop, loop, and audio

problems. Implementation of the UI can be seen in the figure 6.

• Design and usability of the application: The application is designed to be a simple

music player with the possibility of creating a loop in any segment of the song.

– The button “Play/Pause” starts and holds the reproduction of the song. After

a pause, the song resumes from where it was stopped.

– The “Stop” button ends the reproduction of the music and resets the playing

position to the beginning of the track.

– The “Loop” button enables the loop reproduction option. To set the two points

“from” and “to” of the loop, just by double-clicking in the waveform a vertical

red line will indicate each location.

3.3. Application using Essentia.js 27

Figure 6: UI of the application to detect audio problems

– The “Audio Problems Analysis” button will trigger the Essentia.js algorithms

to detect whether there are issues in this track and mark them in the waveform.

• Loading and using Essentia.js: there are different ways of using Essentia.js. The

project documentation website17 describes very well how you can get Essentia work-

ing in your application whatever JS environment you are using. There are also the

steps needed to compile Essentia into Essentia.js.

This application uses Essentia.js as a full JS library. It also uses another way to have

Essentia algorithms in the browser. This second way is with custom extractors. This

option will be explained with more detail in the following section. Essentia.js can be

loaded into the browser to make use of the entire library by loading the files through the

HTML script tags as in the listing 3.11.

<script src="https :// unpkg.com/essentia.js@0 .0.9-dev/dist/essentia -

wasm.web.js"></script >

<script src="https :// unpkg.com/essentia.js@0 .0.9-dev/dist/essentia.

js -core.js"></script >

Listing 3.11: HTML script tags to load Essentia.js from a CDN.

Then as in the listing 3.12 an instance of Essentia.js can be created from a promise.

And finally, the algorithms can be used as shown in the example in listing 3.13.

17https://mtg.github.io/essentia.js/docs/api/

28 Chapter 3. Methodology

EssentiaModule ().then((EssentiaWasmModule)=> {

this.essentia = new Essentia(EssentiaWasmModule);

});

Listing 3.12: Load Essentia Module and create Essentia instance

const frames = this.essentia.FrameGenerator(trackBuffer.

getChannelData (0), FRAME_SIZE , HOP_SIZE);

for (let i = 0; i < frames.size(); i++) {

let frame_windowed = this.essentia.Windowing(frames.get(i), true ,

FRAME_SIZE);

// SNR

snrResults.push(this.essentia.SNR(frame_windowed[’frame’]));

}

Listing 3.13: Example using Essentia.js algorithms

The application will then execute all the algorithms for the audio problems. If any anomaly

is found, the zone where these are will be highlighted by rendering a colour area using the

Canvas API on top of the waveform.

The code for the application is Open-Source under license Afero GPL and can be found in

a GitHub Repository.18 A demo website is available as well.19

3.3.2 Custom extractors

A custom extractor is a different way of using Essentia in the browser. Instead of loading

the entire library, in this case a custom use of the library is programmed in C++ and then

compiled with Emscripten. This is a very interesting way to use Essentia.js as loading the

full library can be overdoing if there is a specific need.

In the GitHub page, although it is still in the ‘dev’ branch there is a good explanation of

how to build a custom extractor.20

For this master thesis, custom extractors have an extra functionality. As will be discussed

in the results section, some of the algorithms to detect audio quality problems do not work

in the way Essentia.js is compiled. For more details into this, please read section 4.2.

The solution to be able to use these algorithms is to create a custom extractor for them.

18https://github.com/ljoglar/wave-form-marker
19https://ljoglar.github.io/wave-form-marker/
20https://github.com/MTG/essentia.js/tree/dev/src/cpp/custom (as of 29/08/2020)

3.3. Application using Essentia.js 29

To facilitate this process an automation process, to create the C++ code needed to be

able to compile these functions into their own custom extractor, has been developed. This

automation has been done using the Python file generation library cog.21 The system is

built in the form of a template folder with the structure shown in the figure 7. These files

have at the top a JSON object with the configuration needed to create the C++ code.

customExtractorFolder

custom-extractor-h.py

custom-extractor-cpp.py

custom-bindings-extractor-cpp.py

Makefile

Figure 7: Folder structure of the template.

An example of the configuration needed to create an extractor for the “StartStopSilence”

Essentia’s algorithm is shown in listing 3.14, listing 3.15, and listing 3.16 followed by the

structure explained for any other custom extractor.

extractors = {

’StartStopSilenceExtractor ’:{

’params ’: ’const int frameSize =512, const int hopSize =256’,

’algorithms ’: [’FrameCutter ’, ’StartStopSilence ’],

’compute_return ’: ’int’

}

}

Listing 3.14: Configuration for custom-extractor-h.py.

The values for the arguments params, algorithms and compute-return of the file custom-

extractor-h.py as shown in listing 3.14 are:

• Name of the Custom Extractor

– params: String with the parameters to pass to the constructor and configure

functions

– algorithms: Array with the names of the Essentia functions to be used in the

extractor

– compute return: String with the variable type that the compute function will

return

30 Chapter 3. Methodology

extractors = {

’StartStopSilenceExtractor ’:{

’params ’: ’const int frameSize , const int hopSize ’,

’algorithms ’: {

’FrameCutter ’: {

’params ’: ["frameSize", "frameSize", "hopSize", "

hopSize", "startFromZero","true"],

’inputs ’: {’signal ’: ’std::vector <float >’},

’outputs ’: {’frame’: ’std::vector <Real >’}

},

’StartStopSilence ’: {

’params ’: [],

’inputs ’: {’frame’: ’std::vector <Real >’},

’outputs ’:{’startFrame ’: ’int’, ’stopFrame ’: ’int’}

}

},

’compute_return ’: ’int’

}

}

Listing 3.15: Configuration for custom-extractor-cpp.py.

The values for the arguments of the JSON configuration of the file custom-extractor-cpp.py

as shown in listing 3.15 are:

The first element is the name of the Custom Extractor.

• params: String with the parameters to pass to the constructor and configure func-

tions

• algorithms: Algorithm name (following Essentia documentation)

– params: Array with pairs of param name (following Essentia documentation)

and variable name or value hardcoded

– inputs: Dictionary with pairs input name (following Essentia documentation)

and a string with the variable type of that input

– outputs: Dictionary with pairs output name (following Essentia documenta-

tion) and a string with the variable type of that output

• compute return: String with the variable type that the compute function will return

21https://nedbatchelder.com/code/cog/

3.3. Application using Essentia.js 31

extractors = {’StartStopSilenceExtractor ’: {’params ’: ’int , int’}}

Listing 3.16: Configuration for custom-bindings-extractor-cpp.py.

The values for the argument params of the file custom-bindings-extractor.py as shown in

listing 3.16 are:

• Name of the Custom Extractor

– params: String with variable types of constructor parameters

Once these files are filled in with the configuration, the next step is to call the cog library

to create the C++ files. By calling the commands in the listing 3.17 in the terminal from

inside the template folder, the C++ files for the custom extractor will be created.

cog -d -o custom -extractor.h custom_extractor_h.py

cog -d -o custom -extractor.cpp custom -extractor -cpp.py

cog -d -o custom -bindings -extractor.cpp custom -bindings -

extractor_cpp.py

Listing 3.17: Command to create the C++ files.

The last step is now to compile the C++ files to create the JS module and wasm binary

to upload to the website to use the custom extractor. By following the instructions in the

GitHub page to compile custom extractors, the final files structure will be like the shown

in figure 8.

Once the files are created it is recommendable to not load the module in a synchronous

way using the main JS thread. Otherwise, Chrome will throw the error shown in figure 9

<script src="/assets/essentia -custom/saturationExtractor/essentia -

custom -extractor.web.js"></script >

EssentiaWASM ().then((EssentiaWasmModule)=> {

this.essentiaSaturationExtractor = new EssentiaWasmModule.

SaturationDetectorExtractor (512, 256);

console.log(this.essentiaSaturationExtractor);

});

Listing 3.18: Code to load the custom extractor to a web application.

32 Chapter 3. Methodology

customExtractorFolder

custom-extractor-h.py

custom-extractor.h

custom-extractor-cpp.py

custom-extractor.cpp

custom-bindings-extractor-cpp.py

custom-bindings-extractor.cpp

essentia-custom-extractor.module.js

essentia-custom-extractor.web.js

essentia-custom-extractor.web.wasm

Makefile

Figure 8: Folder structure after compiling the custom extractor.

Figure 9: Error thrown in Chrome when loading the custom extractor synchronously.

The best way to upload the custom extractor to the web page is by storing locally (or on

a CDN or similar service) the files essentia-custom-extractor.web.js and essentia-custom-

extractor.web.wasm and loading them through the HTML script tags. Then, loading the

module and creating and instance of the extractor using a promise as shown in the list-

ing 3.18.

The code for the custom extractor automation can be found in the Essentia.js repository

fork of the author,22 as it is not yet merged into the main repository.23

22https://github.com/ljoglar/essentia.js
23in the branch custom_saturation_detector

Chapter 4

Results

This chapter presents the results of the elements developed following the explanations on

the section Methodology. On one hand the benchmarking of the algorithms of Essentia.js

and the comparison to Meyda.js, and on the other hand, the results of the application built

to detect audio problems in music files to improve the quality control process for digital

music distribution.

4.1 Benchmark and comparison

The benchmarking was done for common MIR audio features on various devices and

browsers, and on node.js. The analysis times (also called execution times) for the fea-

ture extraction were measured using the Benchmarks.js library. In the case where both

libraries have the same algorithms the two execution times are compared. In other cases

where Meyda.js doesn’t have the algorithms, only the times for Essentia.js are displayed.

As a base comparison element, also the times for Essentia in Python have been measured,

using the equivalent code in Essentia and Essentia.js. The benchmarking of Python im-

plementation was done using the library pytest with the benchmark extension.1

1https://pytest-benchmark.readthedocs.io/en/latest/

33

34 Chapter 4. Results

The following environments have been used for executing the tests:

• Linux with Chrome 84.0.4147.89 run with disabled extensions.

• Linux with Firefox 78.0.2 in private browsing mode.

• Linux with Node.js v.13.13.0.

• Android with Chrome 84.0.4147.89 in incognito mode.

• Android with Firefox Nightly 200727 06:00

• MacOS with Chrome 84.0.4147.135 run in incognito mode.

• MacOS with Firefox 79.0 in private browsing mode.

• MacOS with Safari v.13.1.2 (13609.3.5.1.5)

• iOS with Chrome 85.0.4183.72 in incognito mode.

• iOS with Firefox Focus v.28.0

• iOS with Safari 13.1

The specifications of the devices are:

• The Linux computer is a 2017 DELL XPS-15 with a 2.8GHz x 8 Intel Core i7-7700HQ

processor, 16GB of RAM and as O.S. Ubuntu 19.04.

• The mobile phone is a Xiaomi Redmi Note 7 Pro with a Snapdragon Octa-core 1.7

GHz processor and 6GB RAM, with O.S. Android 9 (LineageOS 16).

• The Mac is a MacBook Pro (Retina, 15-inch, Mid 2014) with 2.8GHz quad-core Intel

Core i7 and 16GB RAM, with MacOS 10.13.6 (High Sierra)

• The iOS is an iPhone 8 with a processor A11 (Hexa-core) and 2 GB RAM with iOS

13.5.1

4.1. Benchmark and comparison 35

(a) Energy (b) RMS

(c) Zero Crossing Rate (d) Amplitude Spectrum

(e) Power Spectrum (f) Spectral Centroid

Figure 10: Distribution of execution times (seconds) per platform

36 Chapter 4. Results

(a) Spectral Flatness (b) Spectral RollOff

(c) Spectral Kurtosis, Skewness, Spread (d) MFCC

(e) Loudness (f) Perceptual Spread

Figure 11: Distribution of execution times (seconds) per platform

4.1. Benchmark and comparison 37

(a) Chroma (b) All time domain and spectrum algorithms (12)

Figure 12: Distribution of execution times (seconds) per platform

The times measured correspond to the entire processing chain, from the moment the entire

audio data is received until the moment the last algorithm finishes the analysis. All the

experiments are done using a 5-second audio segment as input. The same analysis has been

done with longer audio files, but the results are not shown as these do not provide new

information, having the execution times a quite linear relationship to the audio segment

duration.

Figure 10, figure 11, figure 12 (14 plots) show the distribution of execution times for each

algorithm depending on the platform and browser comparing the distribution of execution

times for Essentia.js and Meyda.js. It is very interesting to see how Essentia.js is in most

of the algorithms faster and very much consistent across platforms compared to Meyda.js.

Being the latter very slow in Safari with macOS and iOS.

Meyda.js is a bit faster, although by a small difference in most algorithms in Chrome,

except for Chrome in iOS, and in node.js. Results for node.js will be analysed later.

In the case of the figure 12b Essentia.js is faster in all the cases, suggesting that is more

efficient when it comes to executing a complex chain of algorithms than Meyda.js.

38 Chapter 4. Results

(a) Onset (b) Super Flux

(c) Beats Zapata (d) Yin

(e) Pyin (f) Pyin fft

Figure 13: Distribution of execution times (seconds) per platform

4.1. Benchmark and comparison 39

(a) Spectral Flux (b) Mel Bands

(c) Key Extractor (d) Tuning Frequency

Figure 14: Distribution of execution times (seconds) per platform

In figure 13 and figure 14 are shown the distribution times depending on the environment

of a few algorithms that are not implemented in Meyda.js. It is important to take into

account when looking at these plots that the time scale is not fixed, it depends on the

times of execution of the algorithms.

These show that the platforms are quite consistent on their behaviour with respect to the

times of executions of the algorithms, as all the plots have a similar shape indepently of is

a fast algorithm as Onset in figure 13a or a slow one as Pithc Yin in figure 13d. Clearly

node.js has the worst times followed by the browsers in Android.

40 Chapter 4. Results

(a) Full time scale

(b) Time scale between 0s and 1s

Figure 15: Mean execution times (seconds) for Essentia algorithms

The plots in figure 15 and figure 16 show a comparison of the mean execution times for each

algorithm depending on the environment executed. The first two figures show Essentia.js

algorithms and the latter the equivalents if exist for Meyda.js.

In this case is easier to see how Essentia.js is more consistent having most algorithms

with mean times under the 0.2s except for the platforms FirefoxAndroid, ChromeAndroid

and Node.js, and four tests MFCCs, All Time and Spectrum, Onset SuperFlux and Beat-

s/BPM. It is expected though that these algorithms take more time, except MFCC, which

is something to study further, to understand the reason for this peak.

4.1. Benchmark and comparison 41

(a) Full time scale (b) Time scale between 0s and 1s

Figure 16: Mean execution times (seconds) for Meyda algorithms

About Firefox and Chrome in Android, there is not a clear explanation of why these are

slower and it would be interesting to analyse further, but it is clear that the processor has

less computing capabilities and also Android is a slower OS than Ubuntu and macOS.

Surprisingly, the results for iOS are very good for Essentia.js, having the mean times close

to the computers running Linux and macOS. Even more surprising when looking at the

results for Meyda.js where the three browsers in iOS together with Safari in macOS get

the worst times.

It is important to mention that to be able to have values for the benchmarking on iOS

it was necessary to set the option repetitions to 5. Otherwise, if more repetitions were

done, the benchmarking failed to throw an “out of memory” error. It would be interesting

to continue exploring how Essentia.js behaves on iOS devices, as optimizations may be

needed.

Finally, node.js is a special case that needs consideration. It was very surprising seeing

the results for this platform. It was not expected to have results so different from the

browsers in the same computer, specifically Chrome as the JavaScript base engine is the

same. Web Assembly and the WASM standard could be a reason to take into account,

as is a relatively new technology under active development and with many proposals still

being considered2, such as SIMD optimizations and multi-thread capabilities.

2https://webassembly.org/roadmap/

42 Chapter 4. Results

Another point to consider when it comes to node.js is to study how it works concerning

the garbage collection,3 to avoid having any memory leak in our implementation.

4.2 Application using Essentia.js

A website application was built using Essentia.js algorithms to be able to detect audio

problems in music files to improve the quality control process for digital music distribution.

This way if a problem is found in the music a user uploads to the web, almost immediate

feedback is provided informing the user about the issues in the track for her to take action

on them.

Details about the design and the UI of the application are explained in the section Methodol-

ogy. While implementing the application, issues were found in some Essentia.js algorithms.

The following list looks over the algorithms intended to be used in the application, explain-

ing whether an issue was found for each of them and the solutions carried out. All these

algorithms are included in Essentia and documentation can be found in the website.4

LoudnessEBUR128 This algorithm expects the two channels of a stereo file. At the

moment Essentia.js does not support this kind of object. The solution for this is, as

explained in it’s GitHub issue5 to develop a custom wrapper that allows sending the two

channels separately. This still needs to be released in the main build of Essentia.js, for that

reason it is not implemented in the application. Once it is released it will be integrated.

FalseStereoDetector This algorithm is similar to the previous one, as it also expects as

input the data for the two channels of a stereo file. As in the previous case, this is not

available yet. The solution would be the same as for the LoudnessEBUR128: create a

custom wrapper that allows sending the data of each channel separately.

StartStopCut and SNR. These algorithms are working fine. The first one detects if there

are any cuts at the beginning or the end of the audio file and the second one evaluates the

signal to noise ratio returning three values per frame: instant SNR, averaged SNR, and

spectral SNR.

3https://blog.risingstack.com/node-js-at-scale-node-js-garbage-collection
4https://essentia.upf.edu/algorithms_reference.html
5https://github.com/MTG/essentia.js/issues/28

4.2. Application using Essentia.js 43

HumDetector, TruePeakDetector and GapsDetector when executing them a com-

pilation error is thrown. The type of error can be seen in the listing 4.1. This algorithms

need to be studied to find why the error is thrown.

essentia.HumDetector(this.essentia.arrayToVector(trackBuffer.

getChannelData (0)));

essentia.TruePeakDetector(trackBufferData);

essentia.GapsDetector(frames.get(i));

essentia -wasm.web.js:27 Compiled code throwing an exception ,

10071176 ,27820 ,440

essentia -wasm.web.js:27 Compiled code throwing an exception ,

6083720 ,27820 ,440

Listing 4.1: Compilation Wasm error.

StartStopSilence, SaturationDetector, DiscontinuityDetector, ClickDetector and

NoiseBurstDetector. All these algorithms have an internal counter to know the number

of frames that have passed. This way the return values take into account the position in

the track. Due to a decision in the design of Essentia.js, every time a new sample gets

into the algorithm the count resets losing track of the position in the audio file, therefore

the return values are not valid. To be able to use these algorithms a custom extractor for

them need to be created as explained in section 3.3.2 Custom Extractor.

Chapter 5

Futher work and conclusions

The work presented in this Master thesis is just a part of the work of a bigger project

by the Audio Processing Lab at the Music Technology Group of the Universitat Pompeu

Fabra to turn the C++ library Essentia into a reference library in the Web Audio world.

Providing this way with a reliable and comprehensive audio analysis JavaScript library for

Music Information Retrieval and Sound and Music Computing research on the web.

For this goal to be achieved there is still a long path to follow, although the first steps

into it are already done as demonstrated in this thesis. The library can now be used, even

in some cases is needed to build a workaround like a custom extractor because the main

algorithm in the library has some kind of issue.

5.1 Further Work

One of the most important steps to be done is thorough testing of the JS version. Starting

by unit testing and also integration testing using audio samples with known results over

the algorithms, this way ensuring the algorithms work as they should.

Regarding the parts of the project shown in this thesis, there is work to do derivated from

the benchmarking. Research into why some algorithms take unexpectedly long to execute

like in the case of the MFCC. It would be also interesting to take a deeper look at why

node.js is the slowest environment. This research could lead to some optimisation and

refinement important to improve the efficiency of the library.

44

5.2. Conclusions 45

As mentioned in the results the initial analysis done with different audio lengths seem

to lead to the conclusion that the relationship between the length of the audio and the

execution time of the algorithms is linear. Nevertheless, ensuring that this is the case with

a thorough test case design for the purpose would be also an interesting research. There

could be things like garbage collection issues or other elements that differ in behaviour

from C++ to JS, offuscated.

Another interesting task to do, related to the algorithms used in the Audio Problems

detection application is to fix the design issue of having config and run in the same step.

As explained that causes issues in some algorithms that have an internal count and with

this design it resets every new sample arrives. At the moment the only way of working

with these algorithms is to create a custom extractor.

5.2 Conclusions

This Master thesis reports a few elements that were researched by the author as part of

the project of transforming the library Essentia into a modular, easy-to-use, reliable, and

comprehensive audio analysis JavaScript library to use in the web.

A quite thorough analysis of the trends in MIR research using music and audio analysis and

feature extraction libraries over the past five years has been done, coming to the conclusion

that while Machine Learning technologies are clearly the most used at the moment, there is

a wide range of topics being researched and there is a lack of tools allowing these researchers

to get their studies into the web world.

That is the hole Essentia.js wants to cover. The initial context and steps of the research into

how to compile Essentia into Essentia.js using Emscripten to get a WebAssembly compiled

code together with a JS binding code has been discussed leaving the final solution and

instructions on how to do it out of the scope of this thesis. It can be found in the pending

publication paper [2] and in the website of Essentia.js.1

A benchmark study has been carried out, building a website application to execute the

algorithms and measure the execution times with the library Benchmark.js. Measure-

ments of several algorithms of Essentia.js have been done in a few environments finding

1https://mtg.github.io/essentia.js/

46 Chapter 5. Futher work and conclusions

unexpected results. Also a comparison to equivalent algorithms from another JS library

for audio analysis has been carried out. Again the results where quite dependent on the

browser and device executing the tests. A full analysis of the results is done getting to the

conclusion that while Meyda.js is faster than Essentia.js in some environments Essentia.js

is quite fast and more consistent across environments.

Finally an application with the goal of having Essentia.js working in a production system

was built. The application consists on a system that allows uploading a song and prints

the waveform in a simple player. Once the song is loaded a button can call a set of

algorithms from Essentia to analyse the song and check if it has any audio problems such

as saturation, clipping, cuts and silences among others. During the development process

issues with the Essentia.js algorithms were found, having to look for possible solutions. A

common solution for a few algorithms was to create a custom extractor, for that reason an

automatisation of this process was developed.

List of Figures

1 Distribution of techniques used for MIR research in papers using Librosa. . 7

2 Results of the review of the top 50 papers citing Librosa. 8

3 Distribution of techniques used for MIR research in papers using Essentia. . 9

4 Results of the review of the top 50 papers citing Essentia. 10

5 Basic flow diagram of the process to have Essentia in the browser 16

6 UI of the application to detect audio problems 27

7 Folder structure of the template. 29

8 Folder structure after compiling the custom extractor. 32

9 Error thrown in Chrome when loading the custom extractor synchronously. 32

10 Distribution of execution times (seconds) per platform 35

11 Distribution of execution times (seconds) per platform 36

12 Distribution of execution times (seconds) per platform 37

13 Distribution of execution times (seconds) per platform 38

14 Distribution of execution times (seconds) per platform 39

15 Mean execution times (seconds) for Essentia algorithms 40

16 Mean execution times (seconds) for Meyda algorithms 41

47

Abbreviations

1. Afero GPL Affero General Public License

2. API Application programming interface

3. ASP Audio Signal Processing

4. BPM Beats per minute

5. CDN Content delivery network

6. CPU Central processing unit

7. CSS Cascading style sheets

8. DSP Digital service providers

9. FFTW Fastest Fourier Transform in the West

10. GCC GNU compiler collection

11. DFT Discrete Fourier transform

12. HTML HyperText Markup Language

13. ISC license Internet Systems Consortium license

14. ISMIR International Society of Music Information Retrieval

15. JS JavaScript

16. JSON JavaScript Object Notation

17. LLVM Low level virtual machine

18. MFCC Mel Frequency Cepstral Coefficients

48

LIST OF FIGURES 49

19. MVP Minimum viable product

20. ML Machine learning

21. MIR Music information retrieval

22. MTG Music technology group

23. OS Operative system

24. PCM Pulse-code modulation

25. QC Quality control

26. SNR Signal-to-noise ratio

27. SNS SonoSuite

28. SMC Sound and music computing

29. UI User interface

30. UPF Universitat Pompeu Fabra

31. WASM WebAssembly

Listings

3.1 emconfigure command with paths to gcc7. 16

3.2 Error thrown about argument -O. 17

3.3 Error thrown when failing to build LLVM bitcode. 17

3.4 Emconfigure command with fftw. 18

3.5 Emconfigure command with fftKISS. 18

3.6 Error when compiling with KEEPALIVE. 19

3.7 Code for the Energy algorithms. 20

3.8 Options to set the number of repetions per cycle in benchmarck.js. 22

3.9 Error thrown form iOS. 24

3.10 Error: Out of memory. 24

3.11 HTML script tags to load Essentia.js from a CDN. 27

3.12 Load Essentia Module and create Essentia instance 28

3.13 Example using Essentia.js algorithms . 28

3.14 Configuration for custom-extractor-h.py. 29

3.15 Configuration for custom-extractor-cpp.py. 30

3.16 Configuration for custom-bindings-extractor-cpp.py. 31

3.17 Command to create the C++ files. 31

3.18 Code to load the custom extractor to a web application. 31

4.1 Compilation Wasm error. 43

50

BIBLIOGRAPHY 51

Bibliography

[1] Joglar-Ongay, L., Correya, A., Alonso-Jiménez, P., Serra, X. & Bogdanov, D. Essentia

in the browser. In Xambó, A., Martín, S. R. & Roma, G. (eds.) Proceedings of the

International Web Audio Conference, WAC ’19, 114–115 (NTNU, Trondheim, Norway,

2019).

[2] Correya, A., Bogdanov, D., Joglar-Ongay, L. & Serra, X. Essentia.js: A JavaScript

library for music and audio analysis on the Web. In Proceedings of the 21st Interna-

tional Society for Music Information Retrieval Conference, ISMIR 2020 (2020). URL

https://github.com/MTG/essentia.js.

[3] Sound and music computing. https://en.wikipedia.org/wiki/Sound_and_music_

computing (2020). Accessed: 2020-08-22.

[4] Sound and Music Computing Network. http://www.smcnetwork.org/roadmap#

context. Accessed: 2020-08-22.

[5] Schedl, M., Schedl, M., Knees, P., Pohle, T. & Widmer, G. Towards an auto-

matically generated music information system via web content mining. IN: EURO-

PEAN CONFERENCE ON INFORMATION RETRIEVAL 585—-590 (2008). URL

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.211.8930.

[6] Herrera Boyer, P. MIRages: an account of music audio extractors, semantic de-

scription and context-awareness, in the three ages of MIR. Ph.D. thesis, Universitat

Pompeu Fabra, Barcelona (2018). URL https://zenodo.org/record/1882316.

[7] Downie, J. S. Music information retrieval. Annual Review of Information Science

and Technology 37, 295–340 (2005). URL http://doi.wiley.com/10.1002/aris.

1440370108.

[8] Downie, J. S. The scientific evaluation of music information retrieval systems: Founda-

tions and future. Computer Music Journal 28, 12–23 (2004). URL https://doi.org/

10.1162/014892604323112211. https://doi.org/10.1162/014892604323112211.

[9] Schedl, M., Gómez, E. & Urbano, J. Music information retrieval: Recent develop-

ments and applications (2014). URL http://www.nowpublishers.com/articles/

foundations-and-trends-in-information-retrieval/INR-042.

52 BIBLIOGRAPHY

[10] Mcfee, B. et al. librosa: Audio and Music Signal Analysis in Python. In PROC. OF

THE 14th PYTHON IN SCIENCE CONF (2015). URL https://www.youtube.com/

watch?v=MhOdbtPhbLU.

[11] Bogdanov, D. et al. Essentia: An audio analysis library for music information retrieval.

In Proceedings of the 14th International Society for Music Information Retrieval Con-

ference, ISMIR 2013, 493–498 (2013). URL http://github.com/MTG/gaia.

[12] Rawlinson, H., Segal, N. & Fiala, J. Meyda: an audio feature extraction library for

the Web Audio API *. In Web Audio Conference (Goldsmiths, University of London,

Paris, 2015). URL https://github.com/bmcfee/librosa.

[13] Matuszewski, B. & Schnell, N. LFO-A Graph-based Modular Approach to the Process-

ing of Data Streams. Tech. Rep. (2017). URL https://github.com/ircam-jstools/

parameters.

[14] Collins, N. & Knotts, S. A Javascript Musical Machine Listening Library (2019). URL

http://composerprogrammer.com/research/MMLLfinal.pdf.

[15] Kurihara, K., Itaya, A., Uemura, A., Kitahara, T. & Nagao, K. Picognizer: A

javascript library for detecting and recognizing synthesized sounds. In Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 10714 LNCS, 339–359 (Springer Verlag, 2018).

[16] Beverley, J. PRECIPITATE: Distributed Machine Listening for Participatory Weather

Resonification. Tech. Rep.

[17] Jillings, N. & Bullock, J. JS-XTRACT: A REALTIME AUDIO FEATURE EXTRAC-

TION LIBRARY FOR THE WEB. Tech. Rep. URL www.w3.org/TR/workers/.

[18] Joglar-Ongay, L., Dewey, C. & Wakefield, J. Implementation of Faster than Real

Time Audio Analysis for Use with Web Audio API: An FFT Case Study (2016).

[19] W3C Technical Architecture Group, "Web Audio API Design Review". https:

//github.com/w3ctag/design-reviews/blob/master/2013/07/WebAudio.md. Ac-

cessed: 2020-08-26.

[20] Choi, H. Audioworklet: the Future of Web Audio. In ICMC (2018).

[21] Fonseca, E. et al. FREESOUND DATASETS: A PLATFORM FOR THE CREATION

OF OPEN AUDIO DATASETS. In International Society for Music In- formation

Retrieval Conference (ISMIR), 486–493 (2017).

[22] Porter, A., Bogdanov, D., Kaye, R., Tsukanov, R. & Serra, X. ACOUSTICBRAINZ:

A COMMUNITY PLATFORM FOR GATHERING MUSIC INFORMATION OB-

TAINED FROM AUDIO. In International Society for Music Information Retrieval

Conference (ISMIR 2015) (2015). URL https://github.com/metabrainz/.

[23] Zakai, A. Emscripten: an llvm-to-javascript compiler. In ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA

2011), 301–312 (2011).

[24] Haas, A. et al. Bringing the web up to speed with webassembly. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2017), 185–

200 (2017).

[25] Emscripten Building Projects. https://emscripten.org/docs/compiling/

Building-Projects.html. Accessed: 2020-08-20.

[26] Emscripten and WebAssembly. https://fsan.github.io/post/emscripten_and_

webassembly/. Accessed: 2020-08-30.

[27] Bynens, M. & Dalton, J.-D. Bulletproof JavaScript benchmarks. https://calendar.

perfplanet.com/2010/bulletproof-javascript-benchmarks/ (2010). Accessed:

2020-08-20.

[28] Define number of cycles - Benchmark.js. https://stackoverflow.com/questions/

32629779/define-number-of-cycles-benchmark-js (2016). Accessed: 2020-08-20.

[29] Tilkov, S. & Vinoski, S. Node.js: Using JavaScript to build high-performance network

programs. IEEE Internet Computing 14, 80–83 (2010).

[30] Alonso-Jiménez, P., Joglar-Ongay, L., Serra, X. & Bogdanov, D. Automatic detection

of audio problems for quality control in digital music distribution. In Audio Engineer-

ing Society Convention 146 (2019). URL http://www.aes.org/e-lib/browse.cfm?

elib=20338.

Appendix A

Papers Citing Librosa

The following bibiliography are the articles reviewed for the section 2.1.1. These are

the top 50 most cited papers citing Librosa during the past 5 years.

Bibliography

[1] Fonseca, E. et al. ACOUSTIC SCENE CLASSIFICATION USING A CONVO-

LUTIONAL NEURAL NETWORK ENSEMBLE AND NEAREST NEIGH-

BOR FILTERS (2017).

[2] Alsouda, Y., Pllana, S. & Kurti, A. A Machine Learning Driven IoT Solution

for Noise Classification in Smart Cities (2018). URL http://arxiv.org/abs/

1809.00238. 1809.00238.

[3] Ashis Pati, K., Gururani, S. & Lerch, A. I. Assessment of Student Music

Performances Using Deep Neural Networks. mdpi.com URL www.mdpi.com/

journal/applsci.

[4] Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F. & Widmer, G. Mad-

mom: A new python audio and music signal processing library. In MM 2016

- Proceedings of the 2016 ACM Multimedia Conference, 1174–1178 (Associa-

tion for Computing Machinery, Inc, New York, New York, USA, 2016). URL

http://dl.acm.org/citation.cfm?doid=2964284.2973795. 1605.07008.

54

[5] Cakir, E., Adavanne, S., Parascandolo, G., Drossos, K. & Virtanen, T. Convo-

lutional recurrent neural networks for bird audio detection. In 25th European

Signal Processing Conference, EUSIPCO 2017, vol. 2017-January, 1744–1748

(Institute of Electrical and Electronics Engineers Inc., 2017).

[6] Cakir, E., Parascandolo, G., Heittola, T., Huttunen, H. & Virtanen, T. Con-

volutional Recurrent Neural Networks for Polyphonic Sound Event Detection.

IEEE/ACM Transactions on Audio Speech and Language Processing 25, 1291–

1303 (2017). 1702.06286.

[7] Choi, K., Fazekas, G. & Sandler, M. Towards Playlist Generation Algorithms

Using RNNs Trained on Within-Track Transitions. CEUR Workshop Proceed-

ings 1618 (2016). URL http://arxiv.org/abs/1606.02096. 1606.02096.

[8] Choi, K., Fazekas, G. & Sandler, M. Explaining Deep Convolutional Neural

Networks on Music Classification (2016). URL http://arxiv.org/abs/1607.

02444. 1607.02444.

[9] Choi, K., Fazekas, G., Sandler, M. & Cho, K. Convolutional recurrent neural

networks for music classification. In ICASSP, IEEE International Conference

on Acoustics, Speech and Signal Processing - Proceedings, 2392–2396 (Institute

of Electrical and Electronics Engineers Inc., 2017). 1609.04243.

[10] Chou, S.-Y., Jang, J.-S. R. & Yang, Y.-H. FRAMECNN: A WEAKLY-

SUPERVISED LEARNING FRAMEWORK FOR FRAME-WISE ACOUSTIC

EVENT DETECTION AND CLASSIFICATION. Tech. Rep. (2017). URL

https://github.com/librosa.

[11] Chou, S.-Y., Jang, J.-S. R. & Yang, Y.-H. Learning to Recognize Transient

Sound Events Using Attentional Supervision. Tech. Rep. (2017).

[12] Colonel, J., Curro, C. & Keene, S. Improving Neural Net Autoencoders for Mu-

sic Synthesis. Tech. Rep. URL http://github.com/JTColonel/ann{_}synth.

[13] Dorfer, M. et al. ACOUSTIC SCENE CLASSIFICATION WITH FULLY

CONVOLUTIONAL NEURAL NETWORKS AND I-VECTORS Technical Re-

port. Tech. Rep. URL https://www.kaggle.com/c/dcase2018-task1a-.

[14] Dorfer, M. & Widmer, G. TRAINING GENERAL-PURPOSE AUDIO

TAGGING NETWORKS WITH NOISY LABELS AND ITERATIVE SELF-

VERIFICATION. In Detection and Classification of Acoustic Scenes and

Events 2018 (Surrey, 2018). URL http://dcase.community/documents/

challenge2018/technical{_}reports/DCASE2018{_}Dorfer{_}999.pdf.

[15] Fonseca, E., Plakal, M., Font, F., Ellis, D. P. W. & Serra, X. Audio tagging

with noisy labels and minimal supervision 69–73 (2019). URL http://arxiv.

org/abs/1906.02975. 1906.02975.

[16] Fricke, K. R. & Herzberg, P. Y. Personality and self-reported preference for

music genres and attributes in a German-speaking sample. Journal of Research

in Personality 68, 114–123 (2017).

[17] Hung, Y.-N. & Yang, Y.-H. Frame-level Instrument Recognition by Timbre

and Pitch. Proceedings of the 19th International Society for Music Information

Retrieval Conference, ISMIR 2018 135–142 (2018). URL http://arxiv.org/

abs/1806.09587. 1806.09587.

[18] Juvela, L. et al. Speech Waveform Synthesis from MFCC Sequences with Gen-

erative Adversarial Networks. In ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, vol. 2018-April, 5679–

5683 (Institute of Electrical and Electronics Engineers Inc., 2018). 1804.00920.

[19] Kim, D. H., Lee, M. K., Choi, D. Y. & Song, B. C. Multi-modal emotion

recognition using semi-supervised learning and multiple neural networks in the

wild. In ICMI 2017 - Proceedings of the 19th ACM International Conference on

Multimodal Interaction, vol. 2017-January, 529–535 (Association for Computing

Machinery, Inc, New York, New York, USA, 2017). URL http://dl.acm.org/

citation.cfm?doid=3136755.3143005.

[20] Kim, J., Urbano, J., Liem, C., And, A. H. N. C. & undefined 2020. One

deep music representation to rule them all? A comparative analysis of different

representation learning strategies. Springer URL https://link.springer.

com/article/10.1007/s00521-019-04076-1.

[21] Kumar, A. & Raj, B. Deep CNN Framework for Audio Event Recognition using

Weakly Labeled Web Data (2017). URL http://arxiv.org/abs/1707.02530.

1707.02530.

[22] Kunze, J. et al. Transfer Learning for Speech Recognition on a Budget 168–177

(2017). URL http://arxiv.org/abs/1706.00290. 1706.00290.

[23] Latorre, J. et al. EFFECT OF DATA REDUCTION ON SEQUENCE-TO-

SEQUENCE NEURAL TTS. Tech. Rep. URL https://ieeexplore.ieee.

org/abstract/document/8682168/. 1811.06315v2.

[24] Lerch, A., Gururani, S. & Summers, C. INSTRUMENT ACTIVITY DETEC-

TION IN POLYPHONIC MUSIC USING DEEP NEURAL NETWORKS Text

Book on Audio Content Analysis View project Special Issue "Machine Learn-

ing Applied to Music/Audio Signal Processing" View project INSTRUMENT

ACTIVITY DETECTION IN POLYPHONIC MUSIC USING DEEP NEU-

RAL NETWORKS. Tech. Rep. (2019). URL https://www.researchgate.

net/publication/332621784.

[25] Lorenzo-Trueba, J. et al. Towards achieving robust universal neural vocoding.

In Proceedings of the Annual Conference of the International Speech Commu-

nication Association, INTERSPEECH, vol. 2019-September, 181–185 (Interna-

tional Speech Communication Association, 2019). URL https://arxiv.org/

abs/1811.06292v2. 1811.06292.

[26] Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P.

BIRDVOX-FULL-NIGHT: A DATASET AND BENCHMARK FOR AVIAN

FLIGHT CALL DETECTION. Tech. Rep. URL https://wp.nyu.edu/

birdvox/birdvox-full-night.

[27] Lukic, Y., Vogt, C., Durr, O. & Stadelmann, T. Speaker identification and

clustering using convolutional neural networks. In IEEE International Work-

shop on Machine Learning for Signal Processing, MLSP, vol. 2016-November

(IEEE Computer Society, 2016).

[28] Mcfee, B. et al. Open-Source Practices for Music Signal Processing Research

Recommendations for transparent, sustainable, and reproducible audio re-

search. IEEE SIgnal ProcESSIng MagazInE (2019). URL https://redis.io.

[29] McFee, B., Nieto, O., Farbood, M. M. & Bello, J. P. Evaluating hierarchical

structure in music annotations. Frontiers in Psychology 8 (2017).

[30] Mishra, S., Sturm, B. L. & Dixon, S. LOCAL INTERPRETABLE MODEL-

AGNOSTIC EXPLANATIONS FOR MUSIC CONTENT ANALYSIS. Tech.

Rep. URL https://code.soundsoftware.ac.uk/projects/SoundLIME.

[31] Nieto, O. & Bello, J. P. SYSTEMATIC EXPLORATION OF COMPUTA-

TIONAL MUSIC STRUCTURE RESEARCH. Tech. Rep. URL https:

//github.com/urinieto/msaf.

[32] Oramas, S., Barbieri, F., Nieto, O. & Serra, X. Multimodal Deep Learning for

Music Genre Classification (2018). URL https://doi.org/10.5334/tismir.

10.

[33] Oramas, S., Nieto, O., Barbieri, F. & Serra, X. Multi-label Music Genre Classi-

fication from Audio, Text, and Images Using Deep Features. Proceedings of the

18th International Society for Music Information Retrieval Conference, ISMIR

2017 23–30 (2017). URL http://arxiv.org/abs/1707.04916. 1707.04916.

[34] Oramas, S., Nieto, O., Sordo, M. & Serra, X. A deep multimodal approach for

cold-start music recommendation. In ACM International Conference Proceeding

Series, vol. Part F130153, 32–37 (Association for Computing Machinery, New

York, New York, USA, 2017). URL http://dl.acm.org/citation.cfm?doid=

3125486.3125492. 1706.09739.

[35] Panwar, S., Das, A., of . . . , M. R. . t. S. & undefined 2017. A deep

learning approach for mapping music genres. ieeexplore.ieee.org URL https:

//ieeexplore.ieee.org/abstract/document/7994970/.

[36] Pui Tang, C. et al. Music Genre classification using a hierarchical Long Short

Term Memory (LSTM) model. Tech. Rep. (2018). URL https://doi.org/10.

475/123{_}4.

[37] Raffel, C. Learning-Based Methods for Comparing Sequences, with Applica-

tions to Audio-to-MIDI Alignment and Matching (2016).

[38] Raffel, C. & Ellis, D. P. W. OPTIMIZING DTW-BASED AUDIO-TO-MIDI

ALIGNMENT AND MATCHING. Tech. Rep. URL https://ieeexplore.

ieee.org/abstract/document/7471641/.

[39] Raffel, C. & Ellis, D. P. W. PRUNING SUBSEQUENCE SEARCH WITH

ATTENTION-BASED EMBEDDING. Tech. Rep. URL https://ieeexplore.

ieee.org/abstract/document/7471736/.

[40] Schindler, A., Lidy, T. & Rauber, A. Comparing Shallow versus Deep Neural

Network Architectures for Automatic Music Genre Classification. Tech. Rep.

URL http://ceur-ws.org.

[41] Su, Y., Zhang, K., Wang, J. & Madani, K. Environment Sound Classification

Using a Two-Stream CNN Based on Decision-Level Fusion. mdpi.com URL

www.mdpi.com/journal/sensors.

[42] Tang, T., Jia, J. & Mao, H. Dance with melody: An LSTM-autoencoder

Approach to Music-oriented Dance Synthesis. In MM 2018 - Proceedings of

the 2018 ACM Multimedia Conference, 1598–1606 (Association for Computing

Machinery, Inc, New York, New York, USA, 2018). URL http://dl.acm.org/

citation.cfm?doid=3240508.3240526.

[43] Thickstun, J., Harchaoui, Z. & Kakade, S. Learning Features of Music from

Scratch. 5th International Conference on Learning Representations, ICLR 2017

- Conference Track Proceedings (2016). URL http://arxiv.org/abs/1611.

09827. 1611.09827.

[44] Valenti, M., Diment, A., Parascandolo, G., Squartini, S. & Virtanen, T. DCASE

2016 ACOUSTIC SCENE CLASSIFICATION USING CONVOLUTIONAL

NEURAL NETWORKS. Tech. Rep. (2016).

[45] Valenti, M., Squartini, S., Diment, A., Parascandolo, G. & Virtanen, T. A con-

volutional neural network approach for acoustic scene classification. In Proceed-

ings of the International Joint Conference on Neural Networks, vol. 2017-May,

1547–1554 (Institute of Electrical and Electronics Engineers Inc., 2017).

[46] Vesperini, F., Gabrielli, L., Principi, E., Squartini, S. & Member, S. Polyphonic

Sound Event Detection by using Capsule Neural Networks. Tech. Rep. (2018).

URL https://ieeexplore.ieee.org/abstract/document/8654643/. 1810.

06325v4.

[47] Wyse, L. Audio Spectrogram Representations for Processing with Convolutional

Neural Networks (2017). URL http://arxiv.org/abs/1706.09559. 1706.

09559.

[48] Zeinali, H., Burget, L. & Cernocky, J. Convolutional Neural Networks and

x-vector Embedding for DCASE2018 Acoustic Scene Classification Challenge

(2018). URL http://arxiv.org/abs/1810.04273. 1810.04273.

[49] Zhao, J., Mao, X., Processing, L. C. I. S. & undefined 2018. Learning

deep features to recognise speech emotion using merged deep CNN. IET

URL https://digital-library.theiet.org/content/journals/10.1049/

iet-spr.2017.0320.

[50] Zhao, J., Mao, X. & Chen, L. Speech emotion recognition using deep 1D & 2D

CNN LSTM networks. Biomedical Signal Processing and Control 47, 312–323

(2019).

Appendix B

Papers Citing Essentia

The following bibiliography are the articles reviewed for the section 2.1.2. These are

the top 50 most cited papers citing Essentia during the past 5 years.

Bibliography

[1] Srinivasamurthy, A. & Serra Casals, X. A Data-driven Bayesian Approach to

Automatic Rhythm Analysis of Indian Art Music. Tech. Rep. (2016). URL

http://www.upf.edu.

[2] Chourdakis, E. T. A Machine-Learning Approach to Application of Intelligent

Artificial Reverberation. Journal of the Audio Engineering Society 65 (2017).

URL https://doi.org/10.17743/jaes.2016.0069.

[3] Picas, O. R. et al. A real-time system for measuring sound goodness in instru-

mental sounds. Tech. Rep. URL www.aes.org.

[4] Rao, A., Huynh, E., reviews in . . . , T. R. I. & undefined 2018. Acoustic Methods

for Pulmonary Diagnosis. ieeexplore.ieee.org URL https://ieeexplore.ieee.

org/abstract/document/8514011/.

[5] Fonseca, E. et al. Acoustic scene classification by ensembling gradient boosting

machine and convolutional neural networks. Tech. Rep. (2017). URL https:

//github.com/Microsoft/LightGBM.

61

[6] Porter, A., Bogdanov, D., Kaye, R., Tsukanov, R. & Serra, X. ACOUS-

TICBRAINZ: A COMMUNITY PLATFORM FOR GATHERING MUSIC

INFORMATION OBTAINED FROM AUDIO. In International Society for

Music Information Retrieval Conference (ISMIR 2015) (2015). URL https:

//github.com/metabrainz/.

[7] Abdul, A., Chen, J., Liao, H.-Y. & Chang, S.-H. An Emotion-Aware Person-

alized Music Recommendation System Using a Convolutional Neural Networks

Approach. mdpi.com URL www.mdpi.com/journal/applsci.

[8] Gulati, S., Serrà, J. & Serra, X. AN EVALUATION OF METHODOLOGIES

FOR MELODIC SIMILARITY IN AUDIO RECORDINGS OF INDIAN ART

MUSIC. Tech. Rep. URL http://nema.lis.illinois.edu/nema{_}out/.

[9] Liem, C. C. S. & Hanjalic, A. COMPARATIVE ANALYSIS OF ORCHES-

TRAL PERFORMANCE RECORDINGS: AN IMAGE-BASED APPROACH.

Tech. Rep. URL http://phenicx.upf.edu.

[10] Gulati, S. & Serra Casals, X. Computational Approaches for Melodic De-

scription in Indian Art Music Corpora. Tech. Rep. (2017). URL http:

//www.upf.edu/dtic.

[11] Ono, J., Sikansi, F., . . . , D. C. . t. S. & undefined 2015. Concentric radviz:

Visual exploration of multi-task classification. ieeexplore.ieee.org URL https:

//ieeexplore.ieee.org/abstract/document/7314560/.

[12] Kroher, N., Díaz-Báñez, J. M., Mora, J. & Gómez, E. Corpus COFLA: A

research corpus for the computational study of flamenco music. Journal on

Computing and Cultural Heritage 9 (2016). 1510.04029.

[13] Augello, A. et al. Creation and cognition for humanoid live danc-

ing. Elsevier URL https://www.sciencedirect.com/science/article/pii/

S092188901630584X.

[14] Donahue, C., Lipton, Z. C. & Mcauley, J. Dance Dance Convolution. Tech.

Rep. (2017). URL https://github.com/chrisdonahue/ddc.

[15] Ganguli, K. K., Gulati, S., Serra, X. & Rao, P. DATA-DRIVEN EXPLO-

RATION OF MELODIC STRUCTURES IN HINDUSTANI MUSIC. Tech.

Rep. URL http://www.music-ir.org/mirex/wiki/2011.

[16] Salamon, J. & Bello, J. P. Deep Convolutional Neural Networks and Data

Augmentation for Environmental Sound Classification. Tech. Rep. URL https:

//github.com/justinsalamon/UrbanSound8K-JAMS. 1608.04363v2.

[17] Vaiciukynas, E., Verikas, A., Gelzinis, A., One, M. B. P. & undefined

2017. Detecting Parkinson’s disease from sustained phonation and speech sig-

nals. ncbi.nlm.nih.gov URL https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5628839/.

[18] McNamara, Q., Vega, A. D. L., ACM, T. Y. P. o. t. r. & undefined 2017. Devel-

oping a comprehensive framework for multimodal feature extraction. dl.acm.org

URL https://dl.acm.org/doi/abs/10.1145/3097983.3098075.

[19] Tralie, C. J. Early MFCC and HPCP fusion for robust cover song identification.

In Proceedings of the 18th International Society for Music Information Retrieval

Conference, ISMIR 2017, 294–301 (International Society for Music Information

Retrieval, 2017). 1707.04680.

[20] Chen, Y.-P., Su, L. & Yang, Y.-H. ELECTRIC GUITAR PLAYING TECH-

NIQUE DETECTION IN REAL-WORLD RECORDINGS BASED ON F0

SEQUENCE PATTERN RECOGNITION. Tech. Rep. URL http://play.

riffstation.com/.

[21] Maestre, E., Papiotis, P., Marchini, M., . . . , Q. L. I. & undefined 2017. Enriched

multimodal representations of music performances: Online access and visual-

ization. ieeexplore.ieee.org URL https://ieeexplore.ieee.org/abstract/

document/7849104/.

[22] Bello, J. P. & Salamon, J. Feature Learning with Deep Scattering for Ur-

ban Sound Analysis. ieeexplore.ieee.org URL https://www.researchgate.

net/publication/278019931.

[23] Fonseca, E. et al. FREESOUND DATASETS: A PLATFORM FOR THE CRE-

ATION OF OPEN AUDIO DATASETS. In International Society for Music In-

formation Retrieval Conference (ISMIR), 486–493 (2017).

[24] Salamon, J., Bello, J. P., Farnsworth, A. & Kelling, S. FUSING SHAL-

LOW AND DEEP LEARNING FOR BIOACOUSTIC BIRD SPECIES CLAS-

SIFICATION. Tech. Rep. URL https://ieeexplore.ieee.org/abstract/

document/7952134/.

[25] Alemi, O., Françoise, J., Networks, P. P. & undefined 2017. GrooveNet:

Real-time music-driven dance movement generation using artificial neural net-

works. pdfs.semanticscholar.org URL https://pdfs.semanticscholar.org/

3790/e9d649ecc61e8d3ea0b16cfe0b96379cc34d.pdf.

[26] Angulo, I., Giraldo, S. & Ramirez, R. HEXAPHONIC GUITAR TRAN-

SCRIPTION AND VISUALISATION. Tech. Rep. (2016). URL https:

//repositori.upf.edu/handle/10230/43212.

[27] Hanke, M., Dinga, R., Häusler, C., . . . , J. G. & undefined 2015. High-resolution

7-Tesla fMRI data on the perception of musical genres – an extension to the

studyforrest dataset. f1000research.com URL https://f1000research.com/

articles/4-174.

[28] Rao, A., Chu, S., Batlivala, N., journal of . . . , S. Z. I. & undefined 2018.

Improved detection of lung fluid with standardized acoustic stimulation of

the chest. ieeexplore.ieee.org URL https://ieeexplore.ieee.org/abstract/

document/8443414/.

[29] Turchet, L., Fischione, C., Essl, G., Access, D. K. I. & undefined 2018. Internet

of musical things: Vision and challenges. ieeexplore.ieee.org URL https://

ieeexplore.ieee.org/abstract/document/8476543/.

[30] Choi, K., Joo, D. & Kim, J. Kapre: On-GPU Audio Preprocessing Layers for

a Quick Implementation of Deep Neural Network Models with Keras (2017).

URL http://arxiv.org/abs/1706.05781. 1706.05781.

[31] Faraldo, Á., Gómez, E., Jordà, S., On, P. H. E. C. & undefined 2016. Key

estimation in electronic dance music. Springer URL https://link.springer.

com/chapter/10.1007/978-3-319-30671-1{_}25.

[32] Xu, Y., Kong, Q., Wang, W. & Plumbley, M. D. LARGE-SCALE WEAKLY

SUPERVISED AUDIO CLASSIFICATION USING GATED CONVOLU-

TIONAL NEURAL NETWORK. Tech. Rep. URL https://github.com/

yongxuUSTC/dcase2017{_}task4{_}. 1710.00343v1.

[33] McFee, B., Raffel, C., Liang, D., of the . . . , D. E. P. & undefined 2015. librosa:

Audio and music signal analysis in python. academia.edu URL http://www.

academia.edu/download/40296500/librosa.pdf.

[34] Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F. & Widmer, G. Madmom:

A new python audio and music signal processing library. In MM 2016 - Pro-

ceedings of the 2016 ACM Multimedia Conference, 1174–1178 (Association for

Computing Machinery, Inc, 2016).

[35] Vicente, J., Gil, A., . . . , A. d. L. R. C., Artificial & undefined 2018.

Moodsically. Personal music management tool with automatic classification

of emotions. Springer URL https://link.springer.com/chapter/10.1007/

978-3-319-94649-8{_}14.

[36] Grekow, J. Music Emotion Maps in Arousal-Valence Space. Springer 697–706

(2016). URL https://hal.inria.fr/hal-01637515.

[37] Cheng, Z., (TOIS), J. S. A. T. o. I. S. & undefined 2016. On effective location-

aware music recommendation. dl.acm.org URL https://dl.acm.org/doi/

abs/10.1145/2846092.

[38] Fricke, K., Yorck Herzberg, P., Fricke, K. R. & Herzberg, P. Y. Personality and

Self-reported Preference for Music Genres and Attributes in a German-speaking

Sample Persönlichkeitspsychologie View project QoLISSY View project Per-

sonality and self-reported preference for music genres and attributes in a

German-speaking. Article in Journal of Research in Personality (2017). URL

http://dx.doi.org/10.1016/j.jrp.2017.01.001.

[39] Schnell, N., Schwarz, D., Larralde, J., Borghesi, R. & Pipo, R. B. PiPo, A Plu-

gin Interface for Afferent Data Stream Processing Modules A Plugin Interface

for Afferent Data Stream Processing Modules PIPO, A PLUGIN INTERFACE

FOR AFFERENT DATA STREAM PROCESSING MODULES. Tech. Rep.

(2017). URL http://www.ladpsa.org.

[40] Bayle, Y., Hanna, P. & Robine, M. SATIN: A persistent musical database

for music information retrieval. In ACM International Conference Proceeding

Series, vol. Part F1301 (Association for Computing Machinery, 2017).

[41] Salamon, J., Macconnell, D., Cartwright, M., Li, P. & Bello, J. P. SCAPER: A

LIBRARY FOR SOUNDSCAPE SYNTHESIS AND AUGMENTATION. Tech.

Rep. URL http://urbansed.weebly.com/.

[42] Oramas, S., Ostuni, V. C., Di Noia, T., Serra, X. & Di Sciascio, E. Sound

and music recommendation with knowledge graphs. ACM Transactions on

Intelligent Systems and Technology 8 (2016).

[43] Nieto, O. & Bello, J. P. SYSTEMATIC EXPLORATION OF COMPUTA-

TIONAL MUSIC STRUCTURE RESEARCH. Tech. Rep. URL https:

//github.com/urinieto/msaf.

[44] Serra, X. The Computational Study of a Musical Culture through Its Digital

Traces. Tech. Rep. (2017). URL https://muse.jhu.edu/article/675804.

[45] Bogdanov, D., Porter, A., Urbano, J. & Schreiber, H. The MediaEval 2017

AcousticBrainz Genre Task: Content-based Music Genre Recognition from

Multiple Sources. Tech. Rep. (2017). URL https://multimediaeval.github.

io/2017-AcousticBrainz-Genre-Task/data/.

[46] Pellegrini, T. & Barrière, V. Time-continuous Estimation of Emotion in Music

with Recurrent Neural Networks Open Archive TOULOUSE Archive Ouverte

(OATAO) Time-continuous estimation of emotion in music with recurrent neu-

ral networks. Tech. Rep. (2015). URL http://www.multimediaeval.org/

mediaeval2015/.

[47] Gulati, S., Serrà, J., Ganguli, K. K., Entürkententürk, S. S. & Serra, X. TIME-

DELAYED MELODY SURFACES FOR R AGA RECOGNITION. Tech. Rep.

URL https://github.com/MTG/essentia.

[48] Salamon, J. et al. Towards the automatic classification of avian flight calls for

bioacoustic monitoring. ncbi.nlm.nih.gov URL https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC5120805/.

[49] Knees, P. et al. TWO DATA SETS FOR TEMPO ESTIMATION AND KEY

DETECTION IN ELECTRONIC DANCE MUSIC ANNOTATED FROM

USER CORRECTIONS. Tech. Rep. URL http://blog.dubspot.com/

endo-harmonic-mixing-key-detection-.

[50] Salamon, J. & Bello, J. P. UNSUPERVISED FEATURE LEARNING FOR

URBAN SOUND CLASSIFICATION. URL http://www.freesound.org.

Appendix C

Papers Citing Meyda

The following bibiliography are the articles reviewed for the section 2.1.3. These are

the 18 papers citing Meyda found in Google Scholar.

Bibliography

[1] Bernstein, A. & Taylor, B. Gendy.js: A Web Audio Module for Dynamic

Stochastic Synthesis. Tech. Rep. (2017). URL http://qmro.qmul.ac.uk/

xmlui/handle/123456789/26163.

[2] Beverley, J. PRECIPITATE: Distributed Machine Listening for Participatory

Weather Resonification. Tech. Rep.

[3] Chaki, J. Pattern analysis based acoustic signal processing: a survey of the

state-of-art. International Journal of Speech Technology 1–43 (2020). URL

https://doi.org/10.1007/s10772-020-09681-3.

[4] Collins, N. & Knotts, S. A Javascript Musical Machine Listening Library (2019).

URL http://composerprogrammer.com/research/MMLLfinal.pdf.

[5] Jillings, N. & Bullock, J. JS-XTRACT: A REALTIME AUDIO FEATURE

EXTRACTION LIBRARY FOR THE WEB. Tech. Rep. URL www.w3.org/

TR/workers/.

68

[6] Karadoğan, C. & Köktürk, M. AUDIO BASED CLASSIFICATION OVER

MUSICAL PRODUCTION PERIOD. Ph.D. thesis, İstanbul Technical Uni-

versity, Istanbul (2019). URL https://polen.itu.edu.tr/handle/11527/

18262.

[7] Kurihara, K., Itaya, A., Uemura, A., Kitahara, T. & Nagao, K. Picognizer:

A javascript library for detecting and recognizing synthesized sounds. In Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 10714 LNCS, 339–359

(Springer Verlag, 2018).

[8] Lakka, E., Malamos, A. G., Pavlakis, K. G. & Ware, J. A. Spatial Sound

Rendering – A Survey - Dialnet (2018). URL https://dialnet.unirioja.

es/servlet/articulo?codigo=6901757.

[9] Lee, J. Honkling: In-Browser Personalization for Ubiquitous Keyword Spotting.

Tech. Rep. (2019). URL https://uwspace.uwaterloo.ca/handle/10012/

15343.

[10] Lee, J., Tang, R. & Lin, J. JavaScript Convolutional Neural Networks for

Keyword Spotting in the Browser: An Experimental Analysis (2018). URL

http://arxiv.org/abs/1810.12859. 1810.12859.

[11] Matuszewski, B. & Schnell, N. LFO-A Graph-based Modular Approach to the

Processing of Data Streams. Tech. Rep. (2017). URL https://github.com/

ircam-jstools/parameters.

[12] Moffat, D. J. Evaluation of Synthesised Sound Effects. Tech. Rep. (2019).

[13] Rawlinson, H., Segal, N. & Fiala, J. Meyda: an audio feature extraction library

for the Web Audio API *. In Web Audio Conference (Goldsmiths, University

of London, Paris, 2015). URL https://github.com/bmcfee/librosa.

[14] Roma, G., Xambó, A. & Freeman, J. Loop-aware Audio Recording for the Web.

Tech. Rep. (2017). URL http://freesound.org.

[15] Thompson, L., Cannam, C. & Sandler, M. Piper: Audio Feature Extraction in

Browser and Mobile Applications. Tech. Rep. (2017). URL http://github.

com/piper-audio/.

[16] Won Lee, S., Taylor, B. & Essl, G. Interactive Music on the Web. In Filimowicz,

M. (ed.) Foundations in Sound Design for Interactive Media: A Multidis-

ciplinary, 200–228 (Routledge, 2019). URL https://www.routledge.com/

Foundations-in-Sound-Design-for-Interactive-Media-A-Multidisciplinary/

Filimowicz/p/book/9781138093942.

[17] Xambó, A., Green, O., Tremblay, P. A. & Roma, G. A Javascript Library for

Flexible Visualization of Audio Descriptors. Tech. Rep. (2018). URL https:

//www.vamp-plugins.org.

[18] Zbyszyński, M. et al. Write once run anywhere revisited: machine learning and

audio tools in the browser with C++ and emscripten. Tech. Rep. (2017). URL

http://www.wekinator.org/.

	Introduction
	State of the Art
	Libraries and what are these used for
	Librosa
	Essentia
	Meyda

	Why Essentia in the Browser

	Methodology
	How to have Essentia in the Browser
	Compilation issues
	FFT libraries
	KEEPALIVE

	Benchmark and comparison
	Application using Essentia.js
	Detection of Audio Problems in Music
	Custom extractors

	Results
	Benchmark and comparison
	Application using Essentia.js

	Futher work and conclusions
	Further Work
	Conclusions

	List of Figures
	Bibliography
	Papers Citing Librosa
	Bibliography
	Papers Citing Essentia
	Bibliography
	Papers Citing Meyda
	Bibliography

